FILTERS MADE FUN
[== =]
By Clark Salisbury

Before we jump into this month's column, I think it
would not be totally inappropriate for me to
reminisce a tad - what with it being a new year and
all.

The Mirage is now nearly a vyear old. The first
Mirage that we got in at our store came complete with
sound disk number one, period. No sustain pedals, no
sequencer expander, nothing. Just a disk with piano,
slap bass, flutes, a couple of drums, and some silly
guitar sounds. In a little less than a year, though,
the situation has changed a bit. Now there's MASOS,
Input Sampling Filters, VES's (at least three - and
growing), dozens of sound disks - and it looks like
it's only the beginning for digital sampling. Lest
we forget where we've been, does anyone remember the
original Emulator? A cool $10,000 for a sampler with
a four octave, non-touch-sensitive keyboard which
would hold a maximum of two samples at any given
time. It had no envelope generators, no dynamic
filtering, almost no waveform manipulation, and of
course no MIDI. Why, you couldn't even re-tune the
samples by more than a few cents either way. And,
still, it somehow managed to amaze us. Today there
ijs talk of <developing a part of the MIDI
specification to allow for the dumping of sampled
waveform data in a standard way so that you could
take your Mirage samples and dump them into a
Sequential Prophet 2000, or any other sampling
device. This is particularly exciting news. Once
the programmers and techno-weenies get hold of this,
watch out! I don't think I exaggerate when I say
that we are witnessing a revolution in the way sounds
and music are being created and performed.

Anyway, this month I'd like to talk a bit more about
filters and envelope generators and such, those
friendly processors that help make sampling such good
fun.

In Issue #4 of the Hacker, I briefly touched on the
function of the Mirage filters, but, as many of you
may have realized, there's quite a bit more to it
than I could squeeze into that particular article.

To briefly recap, the filters in the Mirage are 24
dB-per-octave resonant low-pass filters. What a
mouthful. What this actually means 1is that the
Mirage filters will attenuate (turn down) frequencies
above their cutoff point at, say, the frequencies at
20 kHz (one octave higher) will be some 24db quieter.
This, of course, is useful for eliminating unwanted
noise and aliasing present in the original sample.

Transonio Hacker

The Independent Ensoniqg Mirage User's Newsletter

Also,

the filters are known as resonant filters
because the frequencies at the filter cutoff point

can actually be amplified. This can be used to
emphasize upper harmonics present in the waveform,
and is often perceived as guackiness, or the all too
familiar "wah-wah" sound that has come to be
identified particularly with analog synthesizers.

There are other uses for the filters as well. The
sound of many acoustic instruments has a tendency to
become darker over time as the upper harmonics decay.
Percussive instruments, such as guitar, piano, and
marimba are good examples of this. A looped sound,
however, remains at the same level of brightness
indefinitely, and even if a more or less natural
decay in volume is obtained through the use of
envelope generators and voltage-controlled or
digitally-controlled amplifiers, things can sound
somewhat unnatural if the overall brightness of a
sound remains constant. This is one place where
dynamic filtering can be of great usefulness. By
progressively filtering the sound across time, a
gradual (or not so gradual) change in the sound from
bright to dark can be affected. And it works both

ways. The filter can be used to make a sound get
brighter over time. Or you can use rather unnatural
envelope generator settings to get bizarre,

cyclic-sounding changes in brightness, as with upper
and lower program number 4 from the strings/cellos
sample. So how do I control all these nutty kinds of
changes, you ask? Easy. Just check out Uncle
Clark's step-by-step guide to "Filter Wizardry,"
coming right UpPe Reoss1

Let's think of the filter as a "brightness
attenuator.” It can be used to filter out higher
frequency components in the waveform, while letting
the lower freguencies pass through - hence the name
" ow-pass" filter. Note, houwever, that the filter
cannot add upper harmonics or brightness to a
waveform that does not already contain them; it can
only work to attenuate what's already there. In
theory, then, it is probably best to pre-emphasize
the upper frequencies in any sounds you may wish to
sample. Not to worry if your sample turns out a bit
on the bright side - it can always be filtered doun
to normal brightness later on. And this type of
filtering can have the extra benefit of filtering out
unwanted noise and hiss from the wavesample. The
point in the frequency spectrum at which the filter
Begins attenuating is called the cutoff point, and it
can be controlled in a number of ways in the Mirage.

The most obvious filter cutoff point controller is
the Manual Filter Cutoff control, Parameter 36.

Increasing and decreasing the value of this control
has the effect of raising and lowering the filter

ISSUE NUMBER 8

cutoff point in semitone increments, and will be
perceived as brightening and darkening the sound. (I
know I said that the filter could not add brightness,
but we first started with a sample that was overly
bright, didn't we? If you want to know what I mean
ay overly bright, load the piano sample from the
1rusty old Disk 1 and set Parameter 36 to a value of
99 or so. See what I mean?) The next, and less
obvious, filter controller to be aware of is
Wavesample Relative Filter Cutoff (70). This is
similar to the Manual Filter Cutoff control, but it
affects the filter cutoff point only for the
wavesample selected using Parameter 26, Wavesample
Select. This control's raison d'etre is to give you
a way to balance the brightness of multiple
wavesamples by being able to set filter cutoff points
independently for each of them. Nifty, huh? The
third, and last, filter controller to worry about
when setting the base cutoff point of the filter is
Keyboard Tracking, Parameter 38. The idea here is
that if you were to set a filter cutoff point that
sounded appropriate on the low notes of the keyboard,
you may experience problems with the high notes not
sounding bright enough, because the higher harmonics
present in the upper notes would be overly attenuated
by the filter. Keyboard tracking can rectify this
problem by actually using the keyboard to control the
cutoff point of the filter. In other words, the
higher you play on the keyboard, the higher the
keyboard tracking will set the cutoff point of the
filter. Parameter 38 controls the amount of this
effect. To check this one out, simply load a2 sound
into the Mirage and vary the value of Parameter 38
while listening to notes played first on the extreme
lowver end of the keyboard, then on the extreme upper
end. reososr

So far all the controls that we've talked about are
used to set the base cutoff frequency, the point at
which the filter cutoff is set when there is no
modulation inmput.e (I know, I know - keyboard
tracking is a type of modulation. But for my
purposes here, it's easier to group it with this set
of controllers.) There are a number of other ways to
control the filter cutoff point, as you may already
have guessed, you sly devils, you.

The first of these is the envelope generator. We
talked about these a couple of months ago, but I'd
like to go into a little more depth here. There are
S parameters to deal with in the Mirage envelope
generator (not counting the wvelocity sensing
parameters). They are Attack (40), Peak (41), Decay
(42), Sustain (43), and Release (44). Attack (40)
controls how 1long it takes for the filter cutoff to
reach its highest level, with Peak (41) determining
just how high the filter cutoff will go. In other
words, if you want a sound to go from dark to bright
at a fairly slow rate, you would set the attack
parameter to some fairly high value. If you wanted
the sound to eventually end up being pretty bright,
you would set the peak parameter fairly high. Attack
controls how long it takes to raise the filter cutoff
point (get brighter), while peak determines how high
{bright) the filter cutoff will actually end up
going. We must remember, however, that the filter
can not add brightness to a sound, only attenuate it.
So if you have some other controller, such as Manual

Cutoff (36) or Relative Filter Frequency (70) set to
maximum, or if the cumulative effect of two or more
controllers pushes the filter cutoff up to the
maximum, any other controllers you may be using can
have no audible effect. The filter simply has
nowhere to go.

Next is the Decay Control (42), and it works in
conjunction with the Sustain Control (43). The decay
control determines how long it will take for the
filter to go from the maximum value (set by the peak
control) down to the value set by the sustain
control. Thus, if the sustain control is set to O,
(and no other controllers are affecting the filter),
the filter cutoff point will eventually reach a value
of 0, {(even if you continue to hold down the Mirage
keys), effectively filtering out all frequencies.
The effect is that the sound will continue to darken
until it darkens itself right out of existence. If,
on the other hand, you do not want the filter cutoff
point to end up at 0, simply set the sustain control
to a value higher than 0. This will have the effect
of holding the filter "open" while the keys are being
held, and the sound will sustain at this level of
brightness until they are released. Last is the
release control, and it affects the length of time it
takes for the filter to finally decay to O once the
key or keys have been released. Note that all the
filter controllers discussed here, with the exception
of the release control, are active only while the
keys are depressed. As soon as you release the keys,
the envelope generator immediately goes into the
release position of its cycle, and all other control
input to the filter is ignored.

But wait, there's more! Each component of the filter
envelope has a velocity sensing (VS) counterpart.
Attack VS (45) can be used to increase or decrease
attack time according to how hard (alright - how
fast) you play the keyboard. The effect is that if
you play a key slowly, you can obtain a longer attack
time than if the key is struck more quickly, allowing
you to control, by touch, the length of time it takes
for notes to swell. Peak VS (46) causes the filter
cutoff point to go higher the harder the keys are
struck, giving you touch control over brightness.
Decay Kyb (47) is a bit different. In many acoustic
instruments the decay time for high notes is shorter
than for low notes . Decay Kyb causes the decay time
to be affected by keyboard position; higher notes
decay more quickly than low ones. The intensity of
this effect is controlled by Parameter 48, Sustain
VS. The harder you hit keys, the higher the filter
cutof f point will be set, and your sound will sustain
at a brighter timbre. Finally, we have Release VS
(48). This one's kind of fun. With Release VS, the
Mirage actually pays attention to how quickly you
release the keys, and sets the release time
accordingly. If you let go quickly, you get a short
release, and the note decays quickly. If you let go
more slowly, the note will take longer to decay.
This can be a great effect on string samples.

It should be emphasized that the effect of all the
filter controllers is cumulative; they are added
together to form the actual filter cutoff point.

With the exception of release and release VS, these
controllers are active while one or more keys are

being depresseds Manual Filter Cutoff, Wavesample
Filter Cutoff, and Keyboard are added together to
form the base filter cutoff, (you can think of it as
the basic brightness setting for your sample), with
the effects from the envelope generators being added
to this. And remember, if it doesn't make sense at
;irst, mess with it till it does. Thanks for tuning
nl

Clark Salisbury is Product Specialist with Partland
Music Co, i n, i

: in Ore and is also a partner in "The
Midi Connection Portland-based consulting firm.
He has been actlvely involved in the composition,

performing, and recordlng of electronic music for

over five years, and is currently involved in produc-
ing and marketing his own pop-oriented compositions.

MACIC SAMPLE RATES

RC090317

By J. William Mauchly

It is possible to get very clean high freguencies
out of the Mirage. The usual technique is to
oversample a sound; this is the best general solution
to the problem of high frequency distortion. There
is another technique, however, which only works for
sounds that will not be transposed. This article
explains how to get rid of all distortion by playing
back a sound at the exact rate that it was sampled.
It's great for really clean cymbals and special
effects.

The Mirage uses a proprietary oscillator chip to
create digital waveforms. The output of the "Q" chip
is fed to eight analog filters, which reduce the
high-frequency aliasing noise. Another kind of
noise, -however, is also present, which often cannot
be filtered out. This distortion gets much worse as
the high frequency content of a sound increases. The
trouble is that the noise shows up anywhere in the
spectrum.

If wyou are curious about this problem, it |is
instructive to try to sample a high sire wave. Try a
pure sound about two or three octaves above middle C,
and make sure the sample time is set for 34
(microseconds). UWhen played back, you'll hear the
aliasing. There is another sine wave present,
probably lower than the original. It bounces around
from note to note, but it does follow a strict rule.
As you transpose the sound closer and closer to the
pitch of the original sound, the alias gets lower and
lower in pitch. That's interesting - can you make it
go away? Find the note on the keyboard where the
alias tone is the lowest pitch. By using the fine
tune control [68]} of the wavesample, or master tune
[21], you can get the alias to go subaudio. Alas,
this is still not low enough; now the super-low
frequency creates a tremolo effect as it interacts
with the real signal., Here is the answer: when the
alias goes to 0 Hz it will disappear.

Ah, but it's not quite that simple. The tuning of
the Mirage is calibrated in 256ths of an octave.
There is no "notch" in the tuning software which is
exactly right to do the job. You get close, but not
close enough; the distortion is still there.

Now the tricks the detune parameter [33]. This
parameter detunes oscillator two in the smallest
increments available in the hardware. These are
smaller steps than those in the wavesample fine tune
parameter. Set the mix [34) to 63, so that only
oscillator two is heard. Now bumping the detune
parameter can get you to that magic frequency where

the distortion disappears. Completely. UWhat's
happening is that you are setting the playback sample
rate of the sound so that it is EXACTLY the sample
rate of the Q chip, which is 1/34 microseconds.

Now I warred you that that sine wave only sounds pure
on that one key. But one key is enough for certain
sampled sounds; a ride cymbal is a perfect example; a
bell-tree is another.

Here are the constraints, in brief:

1. The sound must be sampled with the sample time at
34,

2. The mix [34] must be at B63.

3. The detune [33] should be set at 1.
combinations may work.)

4, The fine tune must be set according to this chart,
depending on what key you want the sound to come back
ons

{Other

KEY Fine Tune [68]
C 4E
A BE
D# CE
F# 0E

You can find the right value of other notes by
experimenting. The octave should also be set by ear.
Octave transpositions will also be cleaner and have
less distortion. .

Admittedly, it's an awfully obscure technigue. But
it really does work; it sends the alias down to O Hz
on that one key. The other technigue, oversampling,
reduces the amplitude of the alias. That is
obviously a better answer for most sounds. I hope
this tidbit will be of some use to those hackers who
are always searching for the ultimate highs.

Bio: J. William Mauchly, son of the co-inventor of
the ENIAC (the first digital computer) Dr. John W.
Mauchly, has a degree in Computer Science from Temple
University and is Senjor Software Engineer at ENSONIQ
Corp. After playing guitar and synthesizer
professionally for several years, he became
interested in computer music and digital processing.
He started doing Fairlight consulting and
microcomputer music programing around 1880. Since
then, he has been music director for the Symposium on
Small Computers in the Arts, and has been with
ENSONIG for two years. He was one of the designers
of the Mirage and the E5Q-1, and author of the Mirage
Advanced Samplers Guide.

How 1 learned to Love Hexadecimal
]
By Jim DulLaney

Since the procedures for creating multisamples with
MASOS are so dependent on a little knowledge about
hex math, a little information on that subject might
be useful. As a professional in the computer
industry, I first had to come to grips with this
about 15 years ago. 1 know that during the 70's
there was a brief flurry of activity in "new math" or
math based on numbering systems in bases other than
10. To those of you who failed this, or never had
it, this article is dedicated.

Our familiar numbering system is a base 10 numbering
system. In a base 10 numbering system, there are 10
single digit numbering representations (0-8), and
there is no single digit which represents the
number™0". The number "™O" is the first number
which causes an overflow to more than one digit.
Simply stated, the mechanics of the base 10 numbering
system are as follows:

Thousands Hundreds Tens Units

X X X X
H H This number * 10 exp O,
: 3 (1), plus
3 This number * 10 exp 1, (10)
H plus

This number * 10 exp 2, (100)
plus

H
H
1

his number * 10 exp 3, (1000)
Equals the number represented by the Xs above.

In a base 16 numbering system, which is what hex is,
there are 16 single digit numbering representations
(0123456789ABCDEF), and there is no single digit
which represents 16 which is the first increment
wvhere numeric overflow to two digits occurs. The
mechanics of base 16 are the same as base 10
representation:

x4096 x2586 x16 units
X X X X
: This number * 16 exp O (1)
s plus

This number * 16 exp 1 (16)
plus

This number * 16 exp 2 (256)
plus

This number * 16 exp 3 (4096)
Equals the number represented by the Xs above.

'Each X could be a wvalue from 0 - 15
(0123456789ABCDEF)

The obvious question at this point becomes "why
bother with hex?" The answer is not quite so
obvious. What I will try to show you here is that
binary and hex are the same thing.

Among computer techno-weenies hex is an easier way of
handling binary (base 2) which is what the computer
really understands. A bit is the smallest
significant unit of data storage in a computer. It
is an entity which, like a coin flipped, can only be
heads or tails. A bit can store a value of zero or
one, and nothing else. Bytes are a collection of
bits of a specified number (depending on the machine
in gquestion). In the Mirage, a byte consists of
eight bits, and is entered, displayed, and
manipulated in hex. Here's how it works, reowe

In base two, each individual digit can only contain
one of two values (0 - 1, off- on). In binary math
(base 2), there is no single digit which represents
the rumber two and the number 2 is the first time
overflow dictates a two digit representation.

1
X

This number * 2 exp 0, (0)
plus

e e XX N

:
This number * 2 exp 1, (2)
plus

ee o6 os 20 o0 e D D

8
X
: This number * 2 exp 2, (4)
: plus

T

his number * 2 exp 3, (8)

equals the number represented by the Xs above. Each
X could be a value from 0 to 1

From this diagram you can see that the highest
decimal number which can be stored in a four bit
"nybble" (half a byte) is 8+ 4+ 2+ 1 =15, An
eight bit byte, broken into two nybbles neatly
displays as a two digit hex number. Pretty nifty,
huh? Once you understand these basic mechanics it
all becomes pretty clear.

Decimal Hex Binary
1 0 0001
2 02 0010
3 03 0011
4 04 0100
5 gs 7 Juyl
6 06 0110
7 a7 0111
8 08 1000
9 09 1001

10 OA 1010
11 08 101
12 oc 1100
13 aD 110
14 OE 1110
15 OF 111

