
6812

PRELIMINARY INFORMATION

(subject to change without notice) August 28, 1998

ABSOLUTE MAXIMUM RATINGS at $T_A = 25^{\circ}C$

Logic Supply Voltage, V _{DD}	7.0	٧
Driver Supply Voltage, V _{BB}	60	٧
Continuous Output Current Range,		

I_{OUT}..... -40 mA to +15 mA Input Voltage Range,

 V_{IN} -0.3 V to V_{DD} + 0.3 V Package Power Dissipation,

P_D...... See Graph Operating Temperature Range, TA

(Suffix 'E-') -40°C to +85°C (Suffix 'K-') -40°C to +125°C (Suffix 'S-') -20°C to +85°C

Storage Temperature Range,

T_S -55°C to +125°C

Caution: These CMOS devices have input static protection (Class 2) but are still susceptible to damage if exposed to extremely high static electrical charges.

DABiC-IV, 20-BIT SERIAL-INPUT, LATCHED SOURCE DRIVER

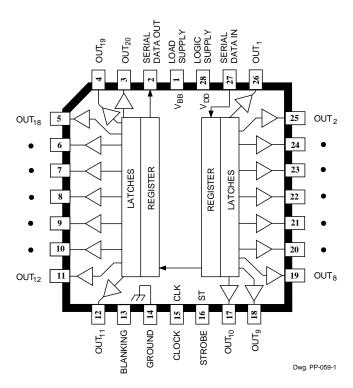
The A6812- devices combine a 20-bit CMOS shift register, accompanying data latches and control circuitry with bipolar sourcing outputs and pnp active pull downs. Designed primarily to drive vacuumfluorescent displays, the 60 V and -40 mA output ratings also allow these devices to be used in many other peripheral power driver applications. The A6812- features an increased data input rate (compared with the older UCN/UCQ5812-F) and a controlled output slew rate.

The CMOS shift register and latches allow direct interfacing with microprocessor-based systems. With a 3.3 V or 5 V logic supply, typical serial-data input rates are up to 33 MHz.

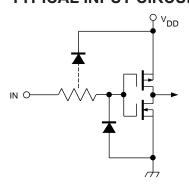
A CMOS serial data output permits cascade connections in applications requiring additional drive lines. Similar devices are available as the A6809- and A6810- (10 bits), A6811- (12 bits), and A6818- (32 bits).

The A6812- output source drivers are npn Darlingtons, capable of sourcing up to 40 mA. The controlled output slew rate reduces electromagnetic noise, which is an important consideration in systems that include telecommunications and/or microprocessors and to meet government emissions regulations. For inter-digit blanking, all output drivers can be disabled and all sink drivers turned on with a BLANK-ING input high. The pnp active pull-downs will sink at least 2.5 mA.

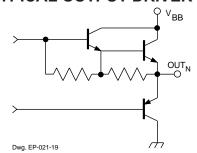
Three temperature ranges are available for optimum performance in commercial (suffix S-), industrial (suffix E-), or automotive (suffix K-) applications. Package styles are provided for through-hole DIP (suffix -A), surface-mount SOIC (suffix -LW), or minimum-area surface-mount PLCC (suffix -EP). Copper lead frames, low logic-power dissipation, and low output-saturation voltages allow these drivers to source 25 mA from all outputs continuously to more than +43°C (suffix -LW), +61°C (suffix -EP), or +77°C (suffix -A).


FEATURES

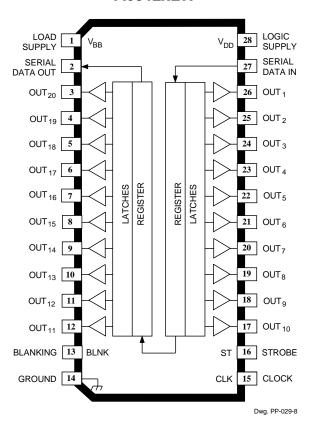
- High-Speed Data Storage
- 60 V Minimum Output Breakdown
- High Data Input Rate
- PNP Active Pull-Downs
- Controlled Output Slew Rate Low Output-Saturation Voltages
 - Low-Power CMOS Logic and Latches
 - Improved Replacements for TL5812-, UCN5812-, and UCQ5812-

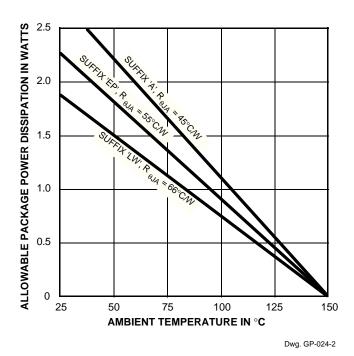

Complete part number includes a suffix to identify operating temperature range (E-, K-, or S-) and package type (-A, -EP, or -LW). Always order by complete part number, e.g., A6812SLW.

A6812xEP

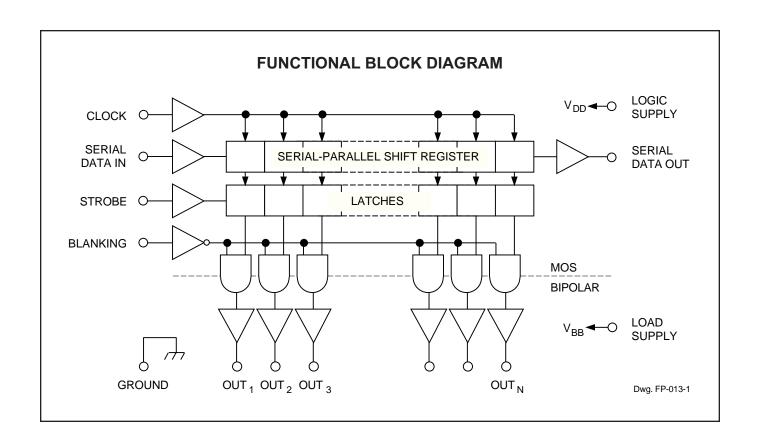


TYPICAL INPUT CIRCUIT




Dwg. EP-010-5

TYPICAL OUTPUT DRIVER



A6812xLW

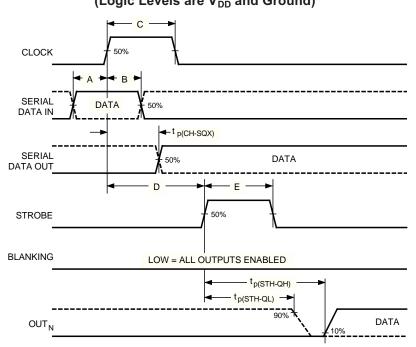
TRUTH TABLE

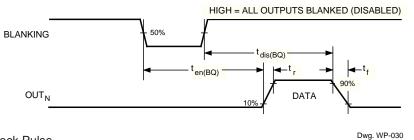
Serial			hift	Regi	ister	Cont	ents	Serial	Latch Contents						Output Contents			ıts			
Data Input	Clock		I ₂	I ₃		I _{N-1}	I _N	Data Output		I ₁	I ₂	l ₃		I _{N-1}	I _N	Blanking	I ₁	l ₂	l ₃	 I _{N-1}	I _N
Н	7	Н	R ₁	R ₂		R _{N-2}	R _{N-1}	R _{N-1}													
L		L	R ₁	R ₂		R _{N-2}	R _{N-1}	R _{N-1}													
Х	L	R_1	R ₂	R ₃		R _{N-1}	R_N	R _N													
		Х	Χ	Χ		Χ	Χ	Х	L	R ₁	R_2	R_3		R _{N-1}	R_N						
		P ₁	P ₂	P ₃		P _{N-1}	P _N	P _N	Н	P ₁	P ₂	P ₃		P _{N-1}	P _N	L	P ₁	P	₂ P ₃	 P _{N-1}	P _N
						·				Χ	Χ	Χ		X	Χ	Н	L	L	L	 L	L

 $L = Low\ Logic\ Level \quad H = High\ Logic\ Level \quad X = Irrelevant \quad P = Present\ State \quad R = Previous\ State$

6812 20-BIT SERIAL-INPUT, LATCHED SOURCE DRIVER

ELECTRICAL CHARACTERISTICS at T_A = +25°C (A6812S-) or over operating temperature range (A6812E- and A6812K-), V_{BB} = 60 V unless otherwise noted.


			Limits	@ V _{DD} :	= 3.3 V	Limits			
Characteristic	Symbol	Test Conditions	MIn.	Тур.	Max.	Min.	Тур.	Max.	Units
Output Leakage Current	I _{CEX}	V _{OUT} = 0 V	_	<-0.1	-15	_	<-0.1	-15	μΑ
Output Voltage	V _{OUT(1)}	I _{OUT} = -25 mA	57.5	58.3	_	57.5	58.3	_	V
	V _{OUT(0)}	I _{OUT} = 1 mA	_	1.0	1.5	_	1.0	1.5	V
Output Pull-Down Current	I _{OUT(0)}	V _{OUT} = 5 V to V _{BB}	2.5	5.0	_	2.5	5.0	_	mA
Input Voltage	V _{IN(1)}		2.2	_	_	3.3	_	_	V
	V _{IN(0)}		-	_	1.1	_	_	1.7	V
Input Current	I _{IN(1)}	$V_{IN} = V_{DD}$	_	<0.01	1.0	_	<0.01	1.0	μА
	I _{IN(0)}	V _{IN} = 0 V	_	<-0.01	-1.0	_	<-0.01	-1.0	μΑ
Input Clamp Voltage	V _{IK}	I _{IN} = -200 μA	_	-0.8	-1.5	_	-0.8	-1.5	V
Serial Data Output Voltage	V _{OUT(1)}	I _{OUT} = -200 μA	2.8	3.05	_	4.5	4.75	_	V
	V _{OUT(0)}	I _{OUT} = 200 μA	_	0.15	0.3	_	0.15	0.3	V
Maximum Clock Frequency	f _c		10	33	_	10	33	_	MHz
Logic Supply Current	I _{DD(1)}	All Outputs High	_	0.25	0.75	_	0.3	1.0	mA
	I _{DD(0)}	All Outputs Low	_	0.25	0.75	_	0.3	1.0	mA
Load Supply Current	I _{BB(1)}	All Outputs High, No Load	_	3.0	6.0	_	3.0	6.0	mA
	I _{BB(0)}	All Outputs Low	_	0.2	20	_	0.2	20	μΑ
Blanking-to-Output Delay	t _{dis(BQ)}	C _L = 30 pF, 50% to 50%	_	0.7	2.0	_	0.7	2.0	μs
	t _{en(BQ)}	C _L = 30 pF, 50% to 50%	_	1.8	3.0	_	1.8	3.0	μs
Strobe-to-Output Delay	t _{p(STH-QL)}	$R_L = 2.3 \text{ k}\Omega, C_L \le 30 \text{ pF}$	_	0.7	2.0	_	0.7	2.0	μs
	t _{p(STH-QH)}	$R_L = 2.3 \text{ k}\Omega, C_L \le 30 \text{ pF}$	_	1.8	3.0	_	1.8	3.0	μs
Output Fall Time	t _f	$R_L = 2.3 \text{ k}\Omega, C_L \le 30 \text{ pF}$	2.4	_	12	2.4	_	12	μs
Output Rise Time	t _r	$R_L = 2.3 \text{ k}\Omega, C_L \leq 30 \text{ pF}$	2.4	_	12	2.4	_	12	μs
Output Slew Rate	dV/dt	$R_L = 2.3 \text{ k}\Omega, C_L \le 30 \text{ pF}$	4.0	_	20	4.0	_	20	V/µs
Clock-to-Serial Data Out Delay	t _{p(CH-SQX)}	I _{OUT} = ±200 μA	_	50	_	_	50	_	ns

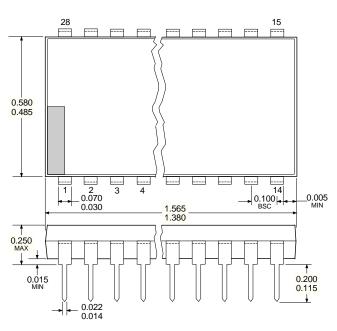

Negative current is defined as coming out of (sourcing) the specified device terminal.

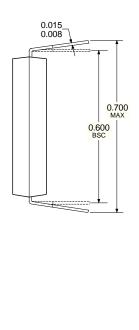
Typical data is is for design information only and is at $T_A = +25$ °C.

TIMING REQUIREMENTS and SPECIFICATIONS (Logic Levels are V_{DD} and Ground)

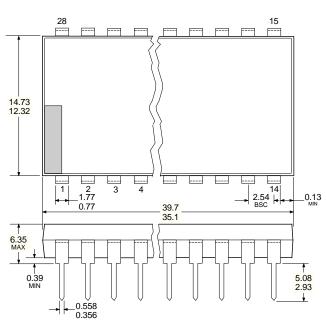
A. Data Active Time Before Clock Pulse
(Data Set-Up Time), t _{su(D)} 25 ns
B. Data Active Time After Clock Pulse
(Data Hold Time), t _{h(D)}
C. Clock Pulse Width, t _{w(CH)} 50 ns
$\textbf{D.}$ Time Between Clock Activation and Strobe, $t_{\text{su}(C)}$ 100 \textbf{ns}
E. Strobe Pulse Width, t _{w(STH)}
NOTE – Timing is representative of a 10 MHz clock. Significantly higher speeds are attainable.

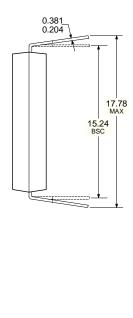
Serial Data present at the input is transferred to the shift register on the logic "0" to logic "1" transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform.


Information present at any register is transferred to the respective latch when the STROBE is high (serial-to-parallel conversion). The latches will continue to accept new data as long as the STROBE is held high. Applications where the latches are bypassed (STROBE tied high) will require that the BLANKING input be high during serial data entry.


Dwg. WP-029

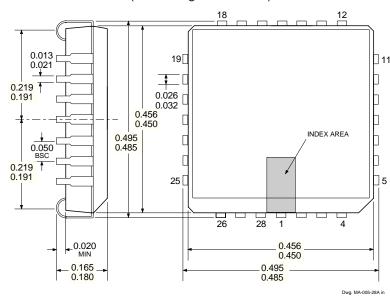
When the BLANKING input is high, the output source drivers are disabled (OFF); the pnp active pull-down sink drivers are ON. The information stored in the latches is not affected by the BLANKING input. With the BLANKING input low, the outputs are controlled by the state of their respective latches.


A6812EA, A6812KA, & A6812SA

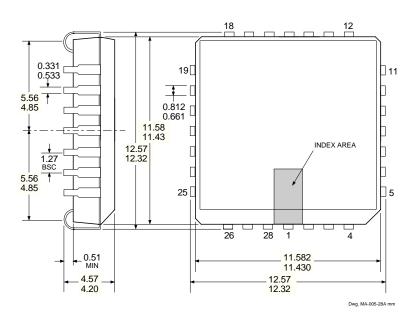

Dimensions in Inches (controlling dimensions)

Dimensions in Millimeters (for reference only)

Dwg. MA-003-28 mm


NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

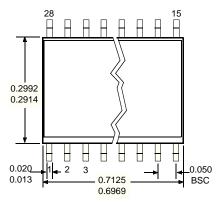
- Lead spacing tolerance is non-cumulative.
 Lead thickness is measured at seating plane or below.

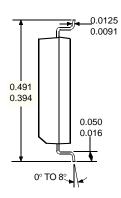


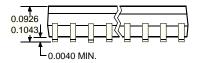
A6812EEP, A6812KEP, & A6812SEP

Dimensions in Inches (controlling dimensions)

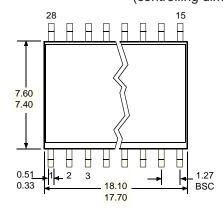
Dimensions in Millimeters (for reference only))

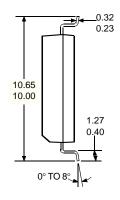


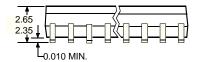

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.


2. Lead spacing tolerance is non-cumulative.

A6812ELW, A6812KLW, & A6812SLW


Dimensions in Inches (for reference only)





Dimensions in Millimeters (controlling dimensions)

Dwg. MA-008-28 in

Dwg. MA-008-28 mm

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

2. Lead spacing tolerance is non-cumulative.

