
V30MX™
CPU CORE

Document No. A11897EJ1V0UM00 (1st edition)
Date Published April 1997 N

1997

User’s Manual

Printed in Japan
©

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

V20HL, V30HL, V30MX, and V series are trademarks of NEC Corporation.

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.
 Standard: Computers, office equipment, communications equipment, test and measurement equipment,
 audio and visual equipment, home electronic appliances, machine tools, personal electronic
 equipment and industrial robots
 Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
 systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
 for life support)
 Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
 support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

M7 96. 5

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without
governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country
other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

PREFACE

The V30MX is an ASIC original CPU core with bus efficiency improved by separating addresses from the data bus of the

µ

PD70116H (V30HL

TM

), an NEC general-purpose microcomputer.

Since the V30MX has the same instruction set as that of the V30HL, existing programs can be used without changes.

Read this document thoroughly in order to carry out LSI design successfully. Be sure to observe the points that are described
in the manual (general points, cautions and restrictions). Failing to observe them may cause deterioration of the quality and
abnormalities in operation of the LSI product.

Readers

: This manual is intended for users who have an understanding of the V30MX functions and wish to design an
application system using the V30MX functions.

Purpose

: This manual is intended to help users understand the V30MX hardware functions and has the following
configuration.

Configuration

: This V30MX User’s Manual consists of a hardware volume (this manual) and an instruction volume.

How to Read this Manual

: This manual assumes that you have a general understanding of electric circuits, logical circuits
and microcomputers.

To have a general understanding of the V30MX functions

→

 Read it according to the table of contents.

To find details of instruction functions

→

 Refer to the separate volume

16-Bit V Series

TM

 User’s Manual – Instruction

.

This manual

Pin functions

CPU functions

Bus control functions

Interrupt functions

Standby functions

Reset functions

Test functions

Instruction

Outline of instructions

Description of instructions

When designing, contact your NEC sales representative or
domestic sales agent to make sure you are using the latest documentations.

Legend

:

Active-low notation :

×××

B (B at the end of pin name, signal name)

Memory map address : Upper side – higher address, lower side – lower address

Note

: Explanation of item marked with “Note” in the text

Caution

:

Item to be especially noted

Remark

: Supplementary information

Numeric notations : Binary ...

×××

 or

×××

B
Decimal ...

×××

Hexadecimal ...

×××

H

Related documents

:

Note that the related documents may be preliminary versions, but there are not indicated as such in this document.

•

User’s Manual – Hardware

V30MX User’s Manual : This document
V20HL

TM

, V30HL, User’s Manual – Hardware : IEM-1124A

• User’s Manual - Instruction

16-Bit V Series User’s Manual – Instruction : U11301E

i

TABLE OF CONTENTS

CHAPTER 1 GENERAL DESCRIPTION

... 1

1.1 Features

... 1

1.2 Outline of Differences from V30HL

.. 1

1.3 Symbol Diagram

.. 2

1.4 Internal Block Diagram

.. 3

CHAPTER 2 PIN FUNCTIONS

... 5

2.1 Pin List

... 5

2.2 Description of Pin Functions

.. 6

2.3 Pin Information in Specific Status

.. 13

CHAPTER 3 CPU FUNCTIONS

... 15

3.1 Register Configuration

... 15

3.1.1 General-purpose registers (AW, BW, CW, DW) ... 15

3.1.2 Segment registers (PS, SS, DS0, DS1)

.. 15

3.1.3 Pointer (SP, BP)

.. 16

3.1.4 Program counter (PC)

... 16

3.1.5 Program status word (PSW)

... 16

3.1.6 Index register (IX, IY)

.. 20

3.2 Address Space

.. 21

3.2.1 Memory space ... 21

3.2.2 I/O space

... 24

3.3 Internal Block Functions

.. 26

3.3.1 Bus control unit (BCU)

.. 26

3.3.2 Execution unit (EXU)

... 28

3.4 Logical Address and Physical Address

.. 30

3.4.1 Segment system

... 30

3.4.2 Segment configuration

.. 31

3.4.3 Dynamic relocation

... 34

3.5 Effective Address

... 36

ii

3.6 Instruction Set

.. 37

3.6.1 List of instruction sets by function.. 37

3.6.2 Format after instruction

... 38

3.7 Addressing Mode

... 38

3.7.1 Instruction address .. 38

3.7.2 Data address

... 39

3.8 Faster Execution of Instructions

... 43

3.8.1 Dual data bus system

... 43

3.8.2 Effective address generator (EAG)

... 44

3.8.3 Temporary register/shifter A and B (TA, TB)

... 44

3.8.4 Loop counter (LC)

... 44

3.8.5 Program counter (PC) and prefetch pointer (PFP)

.. 44

3.9 EMS Functions

.. 45

3.9.1 EMS control registers

.. 45

3.9.2 Caution on accessing EMS control registers

.. 48

3.9.3 EMS setting example ... 48

CHAPTER 4 BUS CONTROL FUNCTIONS

... 51

4.1 Interface between V30MX and Memory

... 51

4.1.1 Cautions on accessing word data

... 52

4.2 Accessing I/O Space

... 53

4.3 Read Timing of Memory and I/O

.. 53

4.4 Write Timing of Memory and I/O

.. 55

4.5 Bus Hold Function

... 57

CHAPTER 5 INTERRUPT FUNCTIONS

.. 61

5.1 Hardware Interrupt

... 64

5.1.1 Non-maskable interrupt (NMI)

... 64

5.1.2 Maskable interrupt (INT)

... 64

5.2 Software Interrupts

.. 67

5.3 Timing at which Interrupt is Not Acknowledged

... 68

5.4 Interrupt Servicing in Execution of Block Processing Instruction

... 69

iii

CHAPTER 6 STANDBY FUNCTIONS

.. 71

6.1 Setting of Standby Mode

... 71

6.2 Standby Mode

.. 71

6.3 Release of Standby Mode

... 73

6.3.1 Release by hardware interrupt

.. 73

6.3.2 Release by RESET input

.. 73

CHAPTER 7 RESET FUNCTIONS

.. 75

CHAPTER 8 TEST FUNCTIONS

... 77

8.1 Test Pins

.. 77

8.1.1 Test bus pins (TBI (27:0), TBO (71:0))

.. 77

8.1.2 BUNRI, TEST

.. 77

8.2 Normal Mode

... 77

8.3 Unit Test Mode and Standby Test Mode

.. 78

8.3.1 Unit test mode

... 78

8.3.2 Standby test mode

.. 78

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

.......................... 79

iv

LIST OF FIGURES

Fig. No. Title, Page

3-1 Memory Map (when EMSREN = 0) ... 21

3-2 Memory Map (when EMSREN = 1) ... 23

3-3 I/O Map (when EMSREN = 0) ... 24

3-4 I/O Map (when EMSREN = 1) ... 25

3-5 Generation of Effective Address .. 28

3-6 Conceptual Diagram of Segment System.. 30

3-7 Relationship between Segment Register, Offset Address and Physical Address.................................. 31

3-8 Relationship between Each Segment Register, Segment and Memory Space..................................... 33

3-9 Dynamic Relocation... 35

3-10 Memory Address Calculation... 36

3-11 Dual Data Bus System... 43

3-12 EMS Control Register (EC).. 46

3-13 EMS Data Register (EDL11 to EDL0, EDH11 to EDH0) ... 47

3-14 EMS Address Register (EMSPA7 to EMSPA2).. 48

4-1 Interface between V30MX and Memory... 51

4-2 Read Timing of Memory and I/O (1 wait) ... 54

4-3 Write Timing of Memory and I/O (1 wait) ... 56

4-4 Bus Hold Timing (Write Operation

→

 Bus Hold State) .. 58

4-5 Bus Hold Timing (Bus Hold State

→

 Write Operation)... 59

5-1 Interrupt Vector Table Configuration... 62

5-2 Interrupt Acknowledge Cycle ... 65

5-3 Interrupt Acknowledge Cycle (with code fetch).. 66

6-1 Timing in Standby Mode .. 72

v

LIST OF TABLES

Table No. Title, Page

3-1 Address and Data Configuration of Each Memory Element .. 22

3-2 Segment Registers and Offset Addressing.. 32

4-1 V30MX Data Access.. 52

5-1 Interrupt Source List .. 61

5-2 Number of Bus Cycles Required until Interrupt is Acknowledged ... 69

7-1 Pin Status after Reset.. 75

7-2 Initial Values of Registers after Reset .. 76

8-1 Test Mode Settings .. 77

1

CHAPTER 1 GENERAL DESCRIPTION

The V30MX core is a CPU core which separates addresses from the data bus of the

µ

PD70116H (V30HL), an NEC general-
purpose microcomputer, improving bus efficiency and CPI (Cycle per Instruction) by 70 % compared with the V30HL. It also
incorporates new registers that support the LIM EMS4.0.

The V30MX core has a complete static circuit configuration, which facilitates standby and clock stop and provides low power
consumption.

Since the V30MX and V30HL use a common instruction set, existing programs can be used without changes.

1.1 Features

(1) A complete static circuit configuration facilitates standby and clock stop.

(2) Low power consumption

(3) Incorporates registers that support LIM EMS4.0.

(4) Address space

• Memory : 1 M bytes (16 M bytes when using EMS)
• I/O : 64 K bytes

(5) A variety of memory addressing modes

(6) 14

×

 16-bit register set

(7) 101-command of instruction set (completely compatible with

µ

PD70116H)

• Bit field manipulation instruction : Data transfer between bit field of bits 1 to 16 of memory and accumulator
• Packed BCD operation instruction : Addition, subtraction and comparison of 1 to 255-digit BCD string
• Bit manipulation instruction : Set, clear, inversion, and test of arbitrary bit of 8/16-bit register and memory

(8) High-speed effective address calculation

1.2 Outline of Differences from V30HL

(1) In the V30HL, addresses and data are multiplexed and use the same pins. In the V30MX, they are separate pins. In
addition, the address bus has been extended to 24 bits. Because of this, the V30MX has a bus timing different from
the V30HL.

(2) The V30MX is not provided with the function of switching between a small scale and large scale as in the V30HL.
Signals like INTAK (OS1) that are output by switching between small and large scales in the V30HL are output from
separate pins in the V30MX.

(3) The following pins exist in the V30HL, but not in the V30MX.

• RQ/AK1, RQ/AK0, S/LG

(4) The V30HL has a

µ

PD8080AF emulation function, but the V30MX has no such function.

2

CHAPTER 1 GENERAL DESCRIPTION

1.3 Symbol Diagram

TBO (71:0) TBI (27:0) TEST BUNRI

EMSREN
READY
INT
POLLB
NMI
RESET
CLK
HLDRQ
D (15:0)
A (23:0)
UBEB
RDB
QS0
QS1
BUSLOCKB
BS0
BS1
BS2
MIOB
WRB

CLKO
HLDAK

BUFENB
BUFRBW

ASTB
INTAKB

PS3
PS2
PS1
PS0

DC
CNT2
CNT1

EO (8:0)
EI (3:0)in in

out

out

out

out

out

out

out

out

out

out

out

i/o

in

in

in

in

in

in

in

out

out

out

out

out

out

out

out

out

out

out

out

out

out

out in in in

3

CHAPTER 1 GENERAL DESCRIPTION

1.4 Internal Block Diagram

BUS HOLD
CONTROL

TA

BT

PS

SS

DS0

DS1

PFP

DP

TEMP

Q0 Q1

Q2 Q3

Q4 Q5

ADM

ALU

LC

PC

AW

BW

CW

DW

IX

IY

BP

SP

TC

SHIFTER

ADDRESS
BUS

BUFFER

BUS
BUFFER

STATUS
CONTROL

INTERRUPT
CONTROL

STANDBY
CONTROL

BUSLOCKB

UBEB
RDB
WRB

BUFENB
BUFRBW
MIOB
INTAKB
ASTB
BS0 to BS2
PS0 to PS2
QS0 to QS1
RESET
READY
POLLB

D (15:0)

T-STATE
CONTROL

CYCLE
DECISION

QUEUE
CONTROL

EFFECTIVE ADDRESS
GENERATOR

µ
A

D
D

R
E

S
S

R
E

G
IS

T
E

R

µ INSTRUCTION
ROM 29 Micro data bus

BCU

EXU

HLDRQ

HLDAK

NMI

INT

CLK

A (23:0)

µ SEQUENCE
CONTROL

INSTRUCTION DECODER

EMS
MAPPER

PSW

Q
ue

ue
 d

at
a

bu
s

(8
)

Subdata bus (16) Main data bus (16)

4

[MEMO]

5

CHAPTER 2 PIN FUNCTIONS

This chapter describes the names and functions of the V30MX core pins.

2.1 Pin List

Remark

The symbols in the input/output field are as follows:
I/O : Bi-directional pin
I : Input pin
O : Output (dedicated) pin
OZ : 3-state output pin

Pin Name Input/Output Function Reference Item

A (23:0) OZ Address 2.2 (1)
D (15:0) I/O Data 2.2 (2)
UBEB OZ Upper Byte Enable 2.2 (3)
RDB OZ Read 2.2 (4)
READY I Bus Ready 2.2 (5)
INT I Interrupt Request 2.2 (6)
POLLB I Test 2.2 (7)
NMI I Non Maskable Interrupt 2.2 (8)
RESET I Reset 2.2 (9)
CLK I Clock 2.2 (10)
QS0, QS1 O Queue Status 2.2 (11)
BUSLOCKB OZ Lock 2.2 (12)
BS2 to BS0 OZ Bus Cycle Status 2.2 (13)
MIOB OZ I/O Memory Select 2.2 (14)
PS0, PS1 O Processor Status (Segment Register) 2.2 (15)
PS2 O Processor Status (PSW: interrupt) 2.2 (16)
PS3 O Processor Status (Native/8080 emulation) 2.2 (17)
WRB OZ Write 2.2 (18)
INTAKB O Interrupt Acknowledge 2.2 (19)
ASTB O Address Strobe 2.2 (20)
BUFRBW OZ Data Transmit Receive 2.2 (21)
BUFENB OZ Data Enable 2.2 (22)
HLDRQ I Hold Request 2.2 (23)
HLDAK O Hold Acknolwedge 2.2 (24)
EMSREN I EMS Registers Access Enable 2.2 (25)
CNT1, CNT2 O 3-state pin control 2.2 (26)
DC O D15 to D0 control 2.2 (27)
BUNRI I Test Bus control 2.2 (28)
TEST I Test Bus control 2.2 (29)
TBI (27:0) I Test Bus (Input) 2.2 (30)
TBO (71:0) OZ Test Bus (Output) 2.2 (31)
EI (3:0) I NEC Reserved 2.2 (32)
EO (8:0) O NEC Reserved 2.2 (33)
CLKO O NEC Reserved 2.2 (34)

6

CHAPTER 2 PIN FUNCTIONS

2.2 Description of Pin Functions

(1) A (23:0) (3-state output) address

24-bit address bus.

The address is output a half clock before the bus cycle. Normally, only A (19:0) are used for output and A (23:20) are
low. When the EMS function is used, these pins are all used as the outputs for all bits A (23:0).

(2) D (15:0) (3-state input/output) data

16-bit data bus.

Go to high impedance during hold acknowledge and interrupt acknowledge.

(3) UBEB (3-state output) upper byte enable

Indicates that the higher bits of D (15:0) (D (15:8)) are used in Tc of the bus cycle.

In the V30MX, memory and I/O are accessed separately for byte data banks which are accessed by an even address
(A0 = 0) and for byte data banks which are accessed by an odd address (UBEB = 0) as shown in the table below.

Remark

The V30MX executes one bus cycle in at least 2 clocks. The first clock is called T

S

, and the next clock T

C

.
When a wait is inserted, T

C

 is repeated until the next bus cycle is started.

The UBEB signal is driven low continuously during interrupt acknowledge (word access at an even address is
necessary due to a vector read).

This pin goes to high impedance during hold acknowledge, but because it incorporates a latch (level hold circuit) it
holds the previous value until it is driven externally. In standby mode, it is fixed at high level output.

(4) RDB (3-state output) read

Outputs a signal which becomes active (low level) during a data read from memory. I/O and memory are
distinguished by MIOB.

This pin goes to high impedance during hold acknowledge, but because it incorporates a latch (level hold circuit) it
holds the previous value until it is driven externally. In standby mode, it is fixed at high level output.

Operand UBEB A0 Number of Bus Cycles

Address of even word 0 0 1

Word at odd address 1st bus cycle 0 1 2

2nd bus cycle 0 0

Byte at even address 1 0 1

Byte at odd address 1 1 1

7

CHAPTER 2 PIN FUNCTIONS

(5) READY (input) bus read

Controls waits.

It is sampled at the end of each T

C

 cycle, that is, on a rise of CLK. When memory or I/O cannot complete a data read/
write operation, if the READY signal is driven high, the V30MX generates a T

C

 cycle and so the read/write cycle can
be extended. When the READY signal is low, it goes to the next bus cycle.

Caution If the READY signal does not satisfy the setup time or hold time, correct operation is not
guaranteed, so establish synchronization using an external circuit.

(6) INT (input) interrupt request

Inputs an interrupt request signal which can be masked by software.

This signal is detected in the last clock cycle of an instruction, and if the interrupt is enabled (interrupt enable flag (IE)
is set (1)) it is acknowledged.

The external device checks whether the INT interrupt request has been acknowledged by the INTAKB signal output
from the V30MX. Therefore, keep the INT signal high until the first INTAKB signal is output.

The priority order of interrupt request signals is as follows.

INT < NMI < HLDRQ

For example, when an INT interrupt and NMI interrupt are generated simultaneously, the NMI interrupt takes
precedence and the INT interrupt is not acknowledged. A hold request can be acknowledged even during INT
acknowledge.

Remark

The standby mode can also be released by an INT signal.

(7) POLLB (input) test

This is used to synchronize between execution of the V30MX program and operation of an external device.

POLLB is checked by the POLL instruction, and if it is low, the next instruction is started, and if it is high, POLLB input
is checked for each clock cycle until it is driven low.

(8) NMI (input)

Inputs an interrupt request signal which cannot be masked by software.

The NMI signal is active at the rising edge and detected in any clock cycle, however, it starts interrupt servicing after
the end of the instruction being executed.

The interrupt start address for this interrupt is determined by interrupt vector 2.

Keep the NMI signal high for at least 5 clock cycles after a rising edge.

When inputting NMI requests consecutively, keep NMI low for at least one clock cycle.

The priority order of interrupt request signals is as follows.

INT < NMI < HLDRQ

Remark

The standby mode can also be released by an NMI signal.

8

CHAPTER 2 PIN FUNCTIONS

(9) RESET (input) reset

Inputs a reset signal.

A RESET signal takes precedence over all operations, and after reset release the program at memory address
FFFF0H starts (segment value: FFFFH, offset value: 0H).

Keep the RESET input pin active (high) for at least 4 clock cycles.

Remark

The standby mode can also be released by a RESET signal.

(10) CLK (input) clock

External clock input.

The V30MX does not divide clocks internally. Therefore, input to this CLK pin and internal operation are performed
at the same frequency. When this CLK input is stopped, the STOP mode is entered. The STOP mode can help to
reduce power consumption drastically.

Caution Stopping CLK input while RESET input is active (high) does not satisfy the power supply current
specification. Be sure to stop CLK input when RESET input is inactive (low).

(11) QS0, QS1 (output) queue status

This is a status signal that notifies an instruction queue signal to off-chip.

The instruction queue status means a status in which the execution unit (EXU) accesses an instruction queue.
Signals QS0 and QS1 are only valid in one clock cycle immediately after this queue access. The table below shows
the relationship between QS0, QS1 and instruction queue status.

(12) BUSLOCKB (3-state output) lock

During execution of one instruction following the BUSLOCK instruction, it outputs a signal requesting the other master
CPU of the multi-processor system not to use the system bus. It also outputs the signal during interrupt acknowledge.

(13) BS0 to BS2 (3-state output) bus cycle status

QS0 QS1 Instruction Queue Status

0 0 No operation

1 0 Fetch of 1st byte of instruction

0 1 Queue is empty.

1 1 Fetch of 2nd and subsequent bytes of instruction

9

CHAPTER 2 PIN FUNCTIONS

(14) MIOB (3-state output) I/O memory select

BS0, BS1, BS2 and MIOB indicate bus statuses as shown in the table below. BS2 of the V30MX has the same output
values as COD/INTA in the i80286.

(15) PS0, PS1 (output) processor status (segment register)

In the V30HL, addresses and processor statuses can be output at any time on a time sharing basis from A16/PS0 to
A19/PS3, while in the V30MX they are output from different pins.

The PS0 and PS1 signals indicate which segment is currently used. The table below shows the relationship between
PS0, PS1 and the segment.

BS2 MIOB BS1 BS0 Bus Cycle

0 0 0 0 Interrupt acknowledge

0 0 0 1 No signal with this combination is generated.

0 0 1 0 No signal with this combination is generated.

0 0 1 1 Idle state

0 1 0 0 HALT state

0 1 0 1 Memory data read

0 1 1 0 Memory data write

0 1 1 1 Idle state

1 0 0 0 No signal with this combination is generated.

1 0 0 1 I/O read

1 0 1 0 I/O write

1 0 1 1 Idle state

1 1 0 0 No signal with this combination is generated.

1 1 0 1 Code fetch

1 1 1 0 No signal with this combination is generated.

1 1 1 1 Idle state

PS0 PS1 Segment

0 0 Data segment 1

1 0 Stack segment

0 1 Program segment

1 1 Data segment 0

10

CHAPTER 2 PIN FUNCTIONS

(16) PS2 (output) processor status (PSW: interrupt)

The PS2 signal indicates the content of the interrupt enable flag (IE) of the program status word (PSW).

The table below shows the relationship between PS2 and IE.

(17) PS3 (output) processor status (native/8080 emulation)

This signal always outputs a low level.

The V30MX is not provided with the

µ

PD8080AF emulation function.

(18) WRB (3-state output) write

Outputs a signal which becomes active (low) in a data write to I/O or memory.

I/O and memory are distinguished by MIOB.

This pin goes to high impedance during hold acknowledge, but since it incorporates a latch (level hold circuit), it holds
the previous state until it is driven externally. In standby mode, it is fixed at high level output.

(19) INTAKB (output) interrupt acknowledge

Outputs an interrupt acknowledge signal.
The INTAKB signal is output when an INT signal is acknowledged, and the external device inputs the interrupt vector
to the V30MX via the data bus in synchronization with this signal.

(20) ASTB (output) address strobe

Outputs a strobe signal to latch address information to off-chip. It is not activated during HALT status output (remains
low).

(21) BUFRBW (3-state output) data transmit receive

Outputs a signal to determine the data transfer direction of the external bi-directional buffer.

The BUFRBW signal indicates transmission to the external device when it is high, and reception from the external
device when it is low.

This pin goes to high impedance during hold acknowledge, but since it incorporates a latch (level hold circuit), it holds
the previous state until it is driven externally. In standby mode, it is fixed at low level output.

(22) BUFENB (3-state output) data enable

Outputs an output enable signal for the external bi-directional buffer.

The BUFENB signal is output during data transfer from/to memory or I/O or during interrupt vector input.

This pin goes to high impedance during hold acknowledge, but since it incorporates a latch (level hold circuit), it holds
the previous state until it is driven externally. In standby mode, it is fixed at high level output.

PS2 IE Flag (PSW) Status

0 0 INT interrupt enabled

1 1 INT interrupt disabled

11

CHAPTER 2 PIN FUNCTIONS

(23) HLDRQ (input) hold request

Inputs a signal from the external device to request the V30MX to release the address bus, data bus and control bus
(bus hold).

The priority order among interrupt request signals and HLDRQ signal is as follows.

INT < NMI < HLDRQ

Caution Since normal operation is not guaranteed unless the HLDRQ signal satisfies the setup time,
establish synchronization using an external circuit.

(24) HLDAK (output) hold acknowledge

Outputs an acknowledge signal which indicates that a bus hold request signal (HLDRQ) has been acknowledged.
While the HLDAK signal is active (high), the address bus, data bus, and 3-state output control bus go to high impedance.

(25) EMSREN (input) EMS registers access enable

Enables/disables access to the I/O mapped register for the EMS function control. When EMSREN is high, access to
the I/O mapped register is enabled. Access is also enabled to the same external I/O address as the I/O address
assigned to the register.

Caution EMSREN can be changed only after a reset. At other timings the operation of the V30MX is not
guaranteed.

(26) CNT1, CNT2 (output) 3-state pin control

(27) DC (output) D (15:0) control

CNT1 is used for control of the 3-state pins A (23:0), BS2, MIOB, UBEB, BUSLOCKB, RDB, WRB, BUFENB, and
BUFRBW.

CNT2 is used for direction control of 3-state pins BS1 and BS0.

DC is used for direction control of input/output pins D (15:0).

The relationship between respective pins and control signals is shown below.

Pin to be Controlled CNT1 Status

A (23:0), BS2, MIOB, UBEB, BUSLOCKB,
RDB, WRB, BUFENB, BUFRBW

H High impedance

L Output active

Pin to be Controlled CNT2 Status

BS1, BS0 H High impedance

L Output active

Pin to be Controlled DC Status

D (15:0) H Input mode

L Output mode

12

CHAPTER 2 PIN FUNCTIONS

(28) BUNRI (input) test bus control

(29) TEST (input) test bus control

(30) TBI (27:0) (input) test bus (input)

(31) TBO (71:0) (3-state output) test bus (output)

These pins are used for mega-function separation tests using the test bus.

For details of using these pins, refer to

CHAPTER 8 TEST FUNCTIONS

.

(32) EI (3:0) (input) NEC reserved

These pins are reserved for NEC.

Be sure to use F091 to input the levels shown in the table below.

(33) EO (8:0) (output) NEC reserved

These pins are reserved for NEC.

Leave these pins open.

(34) CLKO (output) NEC reserved

These pins are reserved for NEC.

Leave these pins open.

EI0 H

EI1 H

EI2 H

EI3 L

13

CHAPTER 2 PIN FUNCTIONS

2.3 Pin Information in Specific Status

Remarks 1.

 “Continuous” in the table indicates that the previous operation is continued.

2.

“Standby” in the test mode refers to the standby test mode (refer to

CHAPTER 8 TEST FUNCTIONS

).

3.

X : Don’t care

Pin

Normal Mode Test Mode

During HOLD During HALT After Reset
Standby

(BUNRI = 1)
(TEST = 0)

Unit Test
(BUNRI = 1)
(TEST = 1)

A (23:0) Hi-Z Continuous Hi-Z Hi-Z Hi-Z

D (15:0) Hi-Z Continuous Hi-Z Hi-Z Hi-Z

UBEB Hi-Z H Hi-Z Continuous X

RDB Hi-Z H Hi-Z Continuous X

QS0, QS1 L L L Continuous X

BUSLOCKB Hi-Z H

Note

Hi-Z Continuous X

BS2 to BS0 Hi-Z L Hi-Z Continuous X

MIOB Hi-Z H Hi-Z Continuous X

PS0 Continuous Continuous L Continuous X

PS1 Continuous Continuous H Continuous X

PS2 Continuous Continuous L Continuous X

PS3 Continuous Continuous L Continuous X

WRB Hi-Z H Hi-Z Continuous X

INTAKB H H H Continuous X

ASTB L L L Continuous X

BUFRBW Hi-Z Continuous Hi-Z Continuous X

BUFENB Hi-Z H Hi-Z Continuous X

HLDAK H L L Continuous X

DC H Continuous H Continuous X

CNT1, CNT2 H Continuous H Continuous X

TBO (71:0) Hi-Z Hi-Z Hi-Z Hi-Z Output

Note

If a BUSLOCK instruction is executed before a HALT instruction, a low level is output.

14

[MEMO]

15

CHAPTER 3 CPU FUNCTIONS

3.1 Register Configuration

3.1.1 General-purpose registers (AW, BW, CW, DW)

There are four 16-bit registers. These can be not only used as 16-bit registers, but also accessed as 8-bit registers (AH, AL,
BH, BL, CH, CL, DH, DL) by dividing each register into the higher 8 bits and the lower 8 bits.

Therefore, these registers are used as 8-bit registers or 16-bit registers for a wide range of instructions such as transfer
instruction, arithmetic operation instruction, logical operation instruction.

Furthermore, the following registers are used as the default registers for specific instruction processing.

• AW : Word multiplication/division, word input/output, data change

• AL : Byte multiplication/division, byte input/output, BCD rotate, data conversion

• AH : Byte multiplication/division

• BW : Data conversion

• CW : Loop control branch, repeat, prefix

• CL : Shift instruction, rotation instruction, BCD operation

• DW : Word multiplication/division, indirect addressing input

3.1.2 Segment registers (PS, SS, DS0, DS1)

The V30MX can divide the memory space into logical segments in 64 K-byte units and control up to 4 segments simultaneously
(segment system). The start address of each segment is specified by the following 4 segment registers.

• Program segment register (PS) : Specifies the base address of the segment that stores instructions.

• Stack segment register (SS) : Specifies the base address of the segment that performs stack operations.

• Data segment 0 register (DS0) : Specifies the base address of the segment that stores data.

• Data segment 1 register (DS1) : Specifies the base address of the segment that is used as a data destination by data
transfer instructions.

For details of the segment system and segment registers, refer to

3.4 Logical Address and Physical Address

.

16

CHAPTER 3 CPU FUNCTIONS

3.1.3 Pointer (SP, BP)

The pointer consists of two 16-bit registers (stack pointer (SP) and base pointer (BP)).

Each register is used as a pointer to specify a memory address and can be referenced in an instruction and is also used as an
index register during a memory data reference.

The SP indicates the address in the stack segment at which the latest data is stored and is used as the default register during
stack operation.

The BP is used to fetch the data stored on the stack.

3.1.4 Program counter (PC)

The PC is a 16-bit binary counter that holds the offset information of the memory address of the program which the execution
unit (EXU) is about to execute.

The PC value is automatically incremented (+1) every time the microprogram fetches an instruction byte from an instruction
queue.

Furthermore, in execution of a branch instruction, call instruction, return instruction and break instruction, a new location is
loaded and the PC value becomes the same as that of the prefetch pointer (PFP).

3.1.5 Program status word (PSW)

The PSW consists of 6 kinds of status flag and 4 kinds of control flag.

Status flag

Control flag

Carry flag (CY) Refer to

(a)

.

Parity flag (P) Refer to

(b)

.

Auxiliary carry flag (AC) Refer to

(c)

.

Zero flag (Z) Refer to

(d)

.

Sign flag (S) Refer to

(e)

.

Overflow flag (V) Refer to

(f)

.

Break flag (BRK) Refer to

(g)

.

Interrupt enable flag (IE) Refer to

(h)

.

Direction flag (DIR) Refer to

(i)

.

Mode flag (MD) Refer to

(j)

.

17

CHAPTER 3 CPU FUNCTIONS

The status flag is automatically set (1) and reset (0) according to the execution result (data value) of each instruction.

The CY flag can directly be set/reset or inverted by an instruction.
The control flag is set/reset by an instruction and controls the operation of the V30MX.

The IE flag and BRK flag are reset when interrupt servicing is started.

RESET input resets (0) all flags (except MD flag).

The PSW is manipulated in byte units or word units by the processing shown below. Processing in byte units is only carried out
on the lower 8 bits (including the status flags except the V flag).

Bits 0 to 7 can be stored or restored in AH by a MOV instruction.

All bits of the PSW are saved to the stack when an interrupt is generated or in execution of a call instruction and restored by a
return instruction (RETI, RETM).

The PSW can be saved or restored to the stack independently by a PUSH PSW instruction or POP PSW instruction.

The flags are set to the states shown below after execution of each instruction.

(a) Carry flag (CY)

< 1 > Binary addition/subtraction

In the case of processing in byte units, CY is set when there is a carry or borrow from operation result bit 7,
and reset otherwise.

In the case of word operation, CY is set when there is a carry or borrow from operation result bit 15, and reset
otherwise. It is not changed by an increment or decrement instruction.

< 2 > Logical operation

CY is reset without regard to the operation result.

< 3 > Binary multiplication

CY is reset if AH is other than 0 as a result of an unsigned byte operation.

CY is reset if AH is AL sign extension as a result of a signed byte operation and set otherwise.

CY is reset if DW is 0 as a result of an unsigned word operation and set otherwise.

CY is reset if DW is AW sign extension as a result of an unsigned word operation and set otherwise.

In the case of an 8-bit immediate operation, CY is reset when the product is within 16 bits and set otherwise.

< 4 > Binary division

Undefined

< 5 > Shift/rotate

In the case of a shift or rotate including the CY flag, CY is set when the bit shifted to the CY flag is 1 and reset
if 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MD 1 1 1 V DIR IE BRK S Z 0 AC 0 P 1 CY

18

CHAPTER 3 CPU FUNCTIONS

(b) Parity flag (P)

< 1 > Binary addition/subtraction, logical operation, shift

Set when the number of “1” bits of the lower 8 bits of the operation result is even and reset when it is odd.

Set when the result is all “0”.

< 2 > Binary multiplication/subtraction

Undefined

(c) Auxiliary carry flag (AC)

< 1 > Binary addition/subtraction

In the case of processing in byte units, it is set when there is a carry from the lower 4 bits to the higher 4 bits
or a borrow from the higher 4 bits to the lower 4 bits, and reset otherwise.

In a word operation, it performs the same operation as for a byte operation with respect to the lower bytes.

< 2 > Logical operation, binary multiplication/division, shift/rotate

Undefined

(d) Zero flag (Z)

< 1 > Binary addition/subtraction, logical operation, shift/rotate

It is set when the 8 bits and 16 bits of the result are all 0 for a byte operation and word operation, respectively,
and reset otherwise.

< 2 > Binary multiplication/division

Undefined

(e) Sign flag (S)

< 1 > Binary addition/subtraction, logical operation, shift/rotate

Set when bit 7 of the result is 1 and reset when it is 0 in the case of a byte operation.

Set when bit 15 of the result is 1 and reset when it is 0 in the case of a word operation.

< 2 > Binary multiplication/division

Undefined

(f) Overflow flag (V)

< 1 > Binary addition/subtraction

Set when carries from bit 7 and bit 6 are different and reset when they are the same in the case of a byte
operation.

Set when carries from bit 15 and bit 14 are different and reset when they are the same in the case of a word
operation.

19

CHAPTER 3 CPU FUNCTIONS

< 2 > Binary multiplication

As a result of an unsigned byte operation, reset if AH is 0 and set otherwise.

As a result of a signed byte operation, reset if AH is sign extension of AL and set otherwise.

As a result of an unsigned word operation, reset if DW is 0 and set otherwise.

As a result of a signed word operation, reset if DW is sign extension of AW and set otherwise.

In the case of an 8-bit immediate operation, reset if the product is within 16 bits and set if the product exceeds
16 bits.

< 3 > Binary division

Reset.

< 4 > Logical operation

Reset.

< 5 > Shift/rotate

In the case of a left 1-bit shift/rotate, the status of the overflow flag is as follows depending on the operation
result.

When CY = MSB: Reset
When CY

≠

 MSB: Set

In the case of a right 1-bit shift/rotate, its status is as follows depending on the operation result.

When MSB = next lower bit of MSB: Reset
When MSB

≠

 next lower bit of MSB: Set

In the case of a multi-bit shift/rotate, it is undefined.

(g) Break flag (BRK)

Only when it is saved to the stack as part of the PSW, it can be set by a memory manipulation instruction, and
becomes valid when restored to the PSW after it is set.

If the BRK flag is set, executing one instruction automatically generates an software interrupt (interrupt vector 1)
allowing tracing of one instruction at a time.

(h) Interrupt enable flag (IE)

IE is set by an EI instruction and the INT interrupt is enabled. It is reset by a DI instruction and the INT interrupt is
disabled.

20

CHAPTER 3 CPU FUNCTIONS

(i) Direction flag (DIR)

Set by a SET1 DIR instruction and reset by a CLR1 DIR instruction.

When the DIR flag is set, processing is carried out from the higher addresses to the lower addresses in block transfer/
input/output type instructions. When it is reset, processing is carried out from the lower addresses to the higher
addresses.

(j) Mode flag (MD)

This is a µPD8080AF emulation function related flag which conforms to the previous V30HL. Since the V30MX is not
provided with the emulation function, this flag is invalid.

3.1.6 Index register (IX, IY)

This consists of two 16-bit registers (IX, IY). In a memory data reference, it is used as an index register to generate effective
addresses (each register can also be referenced in an instruction).

Furthermore, in specific instruction processing, it has the following special roles.

IX: Address register for source operand in block data manipulation instruction
Base register in variable length bit field manipulation instruction
Address register for source operand in BCD string operation instruction

IY: Address register for destination operand in block data manipulation
Base register in variable length bit field manipulation
Address register for destination operand in BCD string operation instruction

21

CHAPTER 3 CPU FUNCTIONS

3.2 Address Space

3.2.1 Memory space

< 1 > When low level is input to EMSREN pin (when EMS is not used)

The V30MX uses 20-bit address information and can access 1 M (512 K word) of memory. The start address after
a reset is FFFF0H.

Figure 3-1 shows the memory map. The 1 K bytes from 00000H to 003FFH are allocated to the interrupt vector
table. However, the table area that is not used by the system can be used for other purposes. The 12 bytes from
FFFF0H to FFFFBH are automatically used for a reset start, etc., and cannot be used for other purposes. The 4
bytes from FFFFCH to FFFFFH are also reserved for future use and are not available to users.

Figure 3-1. Memory Map (when EMSREN = 0)

The elements stored in the memory area include operation codes, interrupt start addresses, stack data, general
variables, and consist of two kinds; byte units and word units.

Addresses generated by an instruction for these elements can be even (A0 = 0) or odd (A0 = 1)Note. Word data in
the V30MX is designed to be accessible for both even and odd addresses. Both even and odd addresses are
possible for generation of an instruction. For the access method, refer to the memory space access method.

Note This excludes the case where the address of the area in which the interrupt start address (interrupt vector
table) is stored is always even (A0 = 0).

Area for general use

Interrupt vector table
(refer to CHAPTER 5 INTERRUPT FUNCTIONS.)

Reserved area

Dedicated area

FFFFFH

FFFFCH
FFFFBH

FFFF0H
FFFEFH

00400H
003FFH

00000H

22

CHAPTER 3 CPU FUNCTIONS

Table 3-1 shows the address and data configuration of each memory element.

The word data configuration and double data configuration are as follows.

Word data configuration Double word data configuration

Table 3-1. Address and Data Configuration of Each Memory Element

Memory Element Address Data Configuration

Operation code Even/odd 1 to 6 bytes

Interrupt vector table Even 2 words/vector

Stack Even/odd Word

General variable Even/odd Byte/word/double word

Higher address Higher byte

Lower address Lower byte

Higher address Higher byte

Lower byte

Higher byte

Lower address Lower byte

Higher word

Lower word

23

CHAPTER 3 CPU FUNCTIONS

< 2 > When high level is input to EMSREN pin (when EMS is used)

When EMS is used, the address space becomes 16 M (24 bits).

The mapping sources for memory extension are 80000H to 9FFFFH (fixed), C0000H to CFFFFH, D0000H to
DFFFFH and E0000H to EFFFFH (selected from these ranges). The mapping destinations are determined by
setting the EMS data register (refer to 3.9 EMS Functions).

The area 000000H to 0FFFFFH is the same as the case where EMS is not used.

The start address after a reset is 0FFFF0H whether the EMS function is used or not.

Figure 3-2. Memory Map (when EMSREN = 1)

Dedicated area

Interrupt vector table
(refer to CHAPTER 5 INTERRUPT FUNCTIONS.)

Area for general use

Reserved area

Area for general use

FFFFFFH

100000H
0FFFFFH

0FFFFCH
0FFFFBH

0FFFF0H

000400H

000000H

0FFFEFH

0003FFH

24

CHAPTER 3 CPU FUNCTIONS

3.2.2 I/O space

The V30MX can access an I/O space of up to 64 K bytes (32 K words) in an area independent of the memory space.

The I/O space is addressed by I/O address information output from the lower 16 bits of the address bus. Figure 3-3 and Figure
3-4 show I/O maps. The 256 bytes of FF00H to FFFFH are reserved for future use and are not available to users.

< 1 > When low level is input to EMSREN pin (when EMS is not used)

Figure 3-3. I/O Map (when EMSREN = 0)

< 2 > When high level is input to EMSREN pin (when EMS is used)

Each register for EMS control is placed in the I/O space and is accessed by an input/output instruction. Writing 01H
to the EMS control register indirect specification register (0026H) beforehand allows the EMS control register to be
accessed. All the 8 bits of the EMS control register indirect specification register are valid and initialized to 00H
after a reset.

For the I/O addresses of these registers, only the lower 10 bits are decoded and the higher 6 bits are not decoded.
Therefore, in software it operates so that the same internal I/O exists in multiple addresses.

Reserved

FFFFH

FF00H
FEFFH

0000H

25

CHAPTER 3 CPU FUNCTIONS

Figure 3-4. I/O Map (when EMSREN = 1)

Reserved

EMS data lower byte register

EMS data higher byte register

EMS address register

EMS control register

EMS control register indirect specification register

FFFFH

FF00H

006FH

006EH

006CH

0026H

0000H

0027H

26

CHAPTER 3 CPU FUNCTIONS

3.3 Internal Block Functions

The V30MX can be divided roughly into 2 processing units; the execution unit (EXU) and bus control unit (BCU). Each unit
operates asynchronously, independent of the other, thus improving bus utilization efficiency and achieving high-speed execution
of instructions.

3.3.1 Bus control unit (BCU)

The BCU has the following functions.

• Instruction prefetch

Performs prefetch of instructions using the prefetch queue (Q5 to Q0).

Prefetch means pre-loading of the next instruction to be executed while the bus is free during execution of an instruction.

The BCU of the V30MX carries out prefetch automatically when there are a lot of free spaces in the queue.

• Control of external address/data bus

Drives the bus in response to a request from the EXU.

• Control of internal/external control functions

Controls the interrupt function, bus hold function and standby function.

The function of each BCU block is as follows.

(1) Prefetch pointer (PFP)

This is a 16-bit binary counter to hold the offset information of the program memory address that the BCU is about to
prefetch in the instruction queue.

The PFP is incremented (+1) every time an instruction byte is prefetched from the program memory. Furthermore, in
execution of a branch, call, return or break instruction, a new location is loaded and the PFP value becomes the same
as that of the program counter (PC).

The PFP is always used together with the program segment (PS).

(2) Prefetch queue (Q5 to Q0)

Provided with 6-byte instruction queue (FIFO), it can store a maximum of 6 bytes of an operation code that is
prefetched by the BCU.

The operation code stored in the queue is fetched and executed by the EXU.

In execution of a branch, call, return or break instruction or servicing of an external interrupt, the content of the queue
is cleared and an instruction at a new location is prefetched.

Normally, a prefetch is carried out when there is a free space of one word (2 bytes) or more. If the average execution
time of instructions that are executed consecutively is greater than the number of clocks necessary to prefetch each
operation code to some degree, operation codes that can be executed by the EXU are ready in the queue every time
the EXU completes execution of one instruction, and it is possible to omit the time for fetch from memory from the
instruction execution time. As a result, this improves the processing speed compared to other CPUs that fetch and
execute one instruction at a time.

27

CHAPTER 3 CPU FUNCTIONS

Caution In the following cases, the effect of the queue is reduced.
• When there are many instructions in which the queues are cleared as with execution of branch

instructions
• When there are a series of instructions with short execution time

(3) Data pointer (DP)

This is a 16-bit register pointing to read/write addresses of variables.

The register contents including the effective addresses generated by the effective address generator (EAG) and offset
values of the memory addresses are transferred to the DP.

(4) Communication temporary register (TEMP)

This is a 16-bit temporary register for communications between the external data bus and EXU.
Since TEMP uses byte accesses, it can read/write the higher byte and lower byte separately.

Basically, the EXU ends a write operation by carrying out data transfer to TEMP and ends a read operation after
conforming that data is transferred from the external data bus to TEMP.

(5) Address modification circuit (ADM)

Performs generation of physical addresses (addition of segment register and prefetch pointer (PFP) or data pointer
(DP)) and increments (+1) of the PFP.

(6) Bus buffer

Performs signal output to the external address bus and signal input/output with the external data bus.

(7) Status controller

Determines the internal state and bus state, transmits them to each internal block and generates signals output to off-
chip.

(8) Bus hold controller

When there is a signal requesting bus release from off-chip, it controls each bus corresponding to the signal.

(9) Interrupt controller

Carries out servicing necessary for an interrupt request from off-chip.

(10) Standby controller

In standby mode, supplies a clock only to the circuits related to the function necessary to release the bus hold function
and standby mode and stops other functions.

Furthermore, performs control when the system returns to the normal state if necessary.

28

CHAPTER 3 CPU FUNCTIONS

3.3.2 Execution unit (EXU)

The EXU decodes instructions prefetched by the BCU and executes them by microprogram control. The function of each EXU
block is as follows.

(1) Arithmetic and logical unit (ALU)

Consists of a full adder and logical operation circuit and executes arithmetic operations (addition/subtraction,
multiplication/division, increment/decrement, auxiliary operations) and logical operations (test, AND, OR, XOR and
bit-wise testing, set, clear, inversion).

(2) Temporary register/shifter A/B (TA/TB)

This is a 16-bit temporary register/shifter used for multiplication/division and shift/rotate (including BCD rotate)
instructions.

In execution of multiplication/division instructions, operates as a TA+TB 32-bit temporary register/shifter, and in
execution of shift/rotate instructions, only TB operates as a 16-bit temporary register/shifter.

Both TA and TB can read/write separately the higher byte and lower byte from/to the internal bus.

TA/TB holds ALU data.

(3) Temporary register C (TC)

This is a 16-bit temporary register used for multiplication/division and other internal processing.

TC holds ALU data.

(4) Loop counter (LC)

This is a 16-bit register which counts the number of loops of primitive block transfer and input/output instructions
(MOVBK, OUTM, etc.) controlled by repeat prefix instructions (REP, REPC, etc.), the number of shifts of multi-bit shift/
rotate instructions.

(5) Effective address generator (EAG)

This is a circuit which performs high-speed calculation of effective addresses necessary in memory accesses. Ends
calculations in 2 clocks for all addressing modes.

Figure 3-5. Generation of Effective Address

EAG

memmod

7 06 5 3 2

2nd byte or 3rd byte of instruction

Effective address

29

CHAPTER 3 CPU FUNCTIONS

Fetches the byte (2nd or 3rd byte) specifying an instruction operand, generates a control signal about ALC and
corresponding register manipulation if a memory access is required, and calculates the effective address and
transfers it to the data pointer (DP).

Furthermore, performs control requesting startup of a bus cycle (memory read) to the BCU if necessary.

(6) Instruction decoder

Classifies the 1st byte of an operation code into a group with a specific function and holds it during execution of a
micro instruction.

(7) Micro address register

Specifies the ROM address of the next micro instruction to be executed.
At the start of execution of a micro instruction, fetches the 1st byte of an instruction stored in the queue as the start
address to this register and specifies the start address of the prescribed micro instruction sequence.

(8) Micro instruction ROM

Holds 1024 words of a 29-bit micro instruction.

(9) Micro instruction sequence circuit

Controls micro address registers, outputs of the micro instruction ROM and synchronization between the EXU and
BCU.

30

CHAPTER 3 CPU FUNCTIONS

3.4 Logical Address and Physical Address

There are two kinds of memory space address; logical address and physical address.

The physical address means an address that directly corresponds to hardware. The V30MX can access a 1 M-byte memory
space and so the range of a physical address value is 00000H to FFFFFH. A physical address is generated every time the bus
control unit (BCU) is started which fetches an instruction and transfers data, etc.

The logical address means an address used for addressing in the segment system.

3.4.1 Segment system

The segment means an address space in small units (MAX. 64 K bytes) which do not directly depend on program creation.

Each segment consists of continuous memory and can be specified individually.

Physical addresses cannot be controlled directly in program creation in machine language. The V30MX specifies memory
addresses in a segment system.

Addressing in the segment system uses the following two types of address.

Segment base address : Start address of segment (address in 1 M-byte memory space)
Offset address : Address allocated to each segment

In the segment system, the segment base address is fixed as a reference point and only the offset address is treated as an
address in processing within each segment.

Figure 3-6. Conceptual Diagram of Segment System

FFFFFH

Segment base address → ×××××H

00000H

FFFFH

0000H

Memory space

Segment Offset address

(maximum)

31

CHAPTER 3 CPU FUNCTIONS

The segment base address is specified by the segment register.

The physical address is a sum of the segment base address and offset address. Figure 3-7 shows the relationship between
the segment register, offset address and physical address.

Figure 3-7. Relationship between Segment Register, Offset Address and Physical Address

As shown in Figure 3-7, the physical address is a sum of 16 times the segment register content (4 bits shifted to left) and offset
value. At this time, the segment register content and offset value are treated as unsigned data.

In a program which is created as a set of multiple segments for which allocation addresses are specified by physical addresses,
each segment is compiled and assembled individually and becomes one or a number of object modules. Each object module
has a segment name, size, content classification, control information, etc., and becomes a parameter in execution of link
processing.

Multiple object modules are linked and the segment base addresses corresponding the physical addresses are specified and
become ready to be loaded to actual memory.

3.4.2 Segment configuration

The V30MX can distinguish 4 kinds of segment(program, stack data 0, data 1) and define them. For each segment the start
address is specified by one of the following 4 segment registers.

The BCU uses different segment registers for generation of physical addresses depending on the type of memory bus cycle.

• Program segment register (PS)

• Stack segment register (SS)

• Data segment 0 register (DS0)

• Data segment 1 register (DS1)

0 0 0 0Segment register (16 bits)

Offset address (16 bits)

Physical address (20 bits)

19 4 3 0

15 0

19 0

32

CHAPTER 3 CPU FUNCTIONS

The offset address within each segment is specified by a specific register or effective address. Table 3-2 shows correspondence
between each segment register and offset addressing.

When the default offset is a prefetch pointer (PFP), stack pointer (SP) and index register (IY) in instruction group B, the segment
registers that can be combined are fixed at PS, SS, and DS1 respectively, and other segment registers cannot be used.

For other default offsets, any segment registers other than the default segment register can be specified by the segment
override prefix.

Figure 3-8 shows the relationship between each segment register, segment and memory space.

Table 3-2. Segment Registers and Offset Addressing

Segment Register
Default Overwrite

Offset

PFP PS Disabled

SP SS Disabled

Effective address (BP base) PS, DS0, DS1

Effective address (non-BP base) DS0 PS, SS, DS1

IX in instruction group ANote

IY in instruction group BNote DS1 Disabled

Note Instruction group A: Primitive block transfer instruction, primitive output instruction, BCD string
instruction, EXT instruction

Instruction group B: Primitive block transfer instruction, primitive input instruction, BCD string
instruction, INS instruction

33

CHAPTER 3 CPU FUNCTIONS

Figure 3-8. Relationship between Each Segment Register, Segment and Memory Space

(1) Program segment

The start address of this segment is determined by the program segment register (PS) and the offset from the start
address is specified by the prefetch pointer (PFP).

In this segment, an operation code, table data, etc., are placed.

By using the segment override prefix (PS:), the program segment can be used as the general variable area and
source data area in execution of instruction group A.

(2) Stack segment

The start address of this segment is determined by the stack segment register (SS) and the offset from the start
address is specified by the effective address when the stack pointer (SP) and base pointer (BP) as the base address
are used.

This is used as an area to save the contents of the return address (PS, PC content), program status word (PSW),
general register, etc., as a parameter transfer area and local variable area.

By using the segment override prefix (SS:), the stack segment can be used as a general variable area and source
data area in execution of instruction group A.

Program segment

PS

DS1

DS0

SS

V30MX

FFFFFH

00000H

0000H

FFFFH

0000H

FFFFH

0000H

FFFFH

0000H

FFFFH

Memory space

Stack segment

Data segment 0

Data segment 1

34

CHAPTER 3 CPU FUNCTIONS

(3) Data segment 0

The start address of this segment is determined by the data segment 0 register (DS0) and the offset from the start
address is specified by the effective address when BP is not used as a base address.

This segment is used as an area to store general variables.

When executing instruction group A, it is used as a source data area. However, in this case, the content of the index
register (IX) becomes the offset.

For the effective address when BP is used as the base address, the stack segment is used as the default, but data
segment 0 can be used if the segment override prefix (DS0:) is used.

(4) Data segment 1

The start address of this segment is determined by the data segment 1 register (DS1). This can be used as a
destination data area when executing instruction group B. In this case, the content of the index register (IY) becomes
the offset.

If the segment override prefix (DS1:) is used, data segment 1 can be used as a general variable area or source data
area in execution of instruction group A.

3.4.3 Dynamic relocation

Relocating programs that are stored in two or more files separately in empty memory spaces for each execution is called
dynamic relocation.

Figure 3-9 shows a conceptual diagram of dynamic relocation.

For the V30MX, memory addressing of a program can be determined only with the offset value for the base address of each
segment (specified by each segment register). Therefore, it is possible to allocate the program in an arbitrary memory space
by only adjusting to the physical address of the memory at which it is to be allocated (however, this is only possible if the base
address of each segment is not changed in the program). This increases the degree of freedom of program allocation in the
memory (addressing is possible in 16-byte units), enabling more effective utilization of memory and making it easier to
implement a system that executes multiple jobs and tasks.

This can be applied to executing a program in a file on an external storage medium such as a floppy disk and hard disk with the
OS controlling the memory allocation area, type, and segment registers, and loading the program in any empty memory area.

35

CHAPTER 3 CPU FUNCTIONS

Figure 3-9. Dynamic Relocation

(a) Before relocation (b) After relocation

V30MX

FFFFFH

00000H

Data
segment 1

Memory space

Program
segment

Stack
segment

Data
segment 0

PS

DS1

DS0

SS

V30MX

FFFFFH

00000H

Data
segment 1

Memory space

Program
segment

Stack
segment

Data
segment 0

PS

DS1

DS0

SS

36

CHAPTER 3 CPU FUNCTIONS

3.5 Effective Address

The effective address (EA) is an unsigned 16-bit number and is the memory address to be processed by an instruction
represented by the offset value for the base address of the corresponding segment. This is calculated by the execution unit
(EXU) according to the specification of an instruction operand.

The EXU calculates EA in several different methods (addressing mode). The method is selected by the 2nd byte operand of
the instruction. The information encoded in the 2nd byte of the instruction indicates how the effective address of the memory
indicated by the operand is calculated by the EXU. This operand code is automatically generated by a compiler or assembler
from a program statement or instruction description. All addressing modes are available in assembly language.

The method of calculation of EA is shown below. Figure 3-10 indicates that the EXU calculates EA by adding the displacement,
base register contents, and index register contents. For any instruction, these three elements can be combined arbitrarily. The
displacement is an 8-bit or 16-bit immediate number indicated by an operand.

Figure 3-10. Memory Address Calculation

BW

Encoded in instruction

Determined by instruction

Uniformly determined
unless it is denied by
segment override prefix

Effective address

Physical address (20 bits)

DS1 0000

DS0 0000

PS 0000

SS 0000

or

or

or

BP

IX

IY

BW

or

or

or

BP

or

IX

IY

or

Displacement (16 bits)

37

CHAPTER 3 CPU FUNCTIONS

3.6 Instruction Set

3.6.1 List of instruction sets by function

The V30MX instructions consist of 101 instructions in its instruction set and functionally these are roughly classified into the
following 27 kinds.

Refer to the 16-Bit V Series User’s Manual – Instruction for details of each instruction. The number of clocks is shown in
APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS.

Instruction Group Mnemonic

Data transfer instruction LDEA, MOV, TRANS, TRANSB, XCH

Repeat prefix REP, REPC, REPE, REPNC, REPNE, REPNZ, REPZ

Primitive block transfer instruction CMPBK, CMPBKB, CMPBKW, CMPM, CMPMB, CMPMW, LDM, LDMB,
LDMW, MOVBK, MOVBKB, MOVBKW, STM, STMB, STMW

Bit field manipulation instruction EXT, INS

Input/output instruction IN, OUT

Primitive input/output instruction INM, OUTM

Addition/subtraction instruction ADD, ADDC, SUB, SUBC

BCD operation instruction ADD4S, CMP4S, ROL4, ROR4, SUB4S

Increment/decrement instruction DEC, INC

Multiplication instruction MUL, MULU

Division instruction DIV, DIVU

BCD adjustment instruction ADJ4A, ADJ4S, ADJBA, ADJBS

Data conversion instruction CVTBD, CVTBW, CVTDB, CVTWL

Comparison instruction CMP

Complement operation instruction NEG, NOT

Logical operation instruction AND, OR, TEST, XOR

Bit manipulation instruction CLR1, NOT1, SET1, TEST1

Shift instruction SHL, SHR, SHRA

Rotate instruction ROL, ROLC, ROR, RORC

Subroutine control instruction CALL, RET

Stack manipulation instruction DISPOSE, POP, PREPARE, PUSH

Branch instruction BR

Conditional branch instruction
BC, BCWZ, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL,
BNV, BNZ, BP, BPE, BPO, BZ, BV, DBNZ, DBNZE, DBNZNE

Interrupt instruction BRK, BRKEM, BRKV, CHKIND, RETI

CPU control instruction BUSLOCK, DI, EI, FPO1, FPO2, HALT, NOP, POLL

Segment override prefix DS0:, DS1:, PS:, SS:

Emulation mode dedicated instruction CALLN, RETEM

38

CHAPTER 3 CPU FUNCTIONS

3.6.2 Format after instruction

Remark Op-code : 8-bit code indicating type of instruction
Operand : Field indicating register, memory address to be processed by instruction. Indicated by field of

0 to 5 bytes

3.7 Addressing Mode

3.7.1 Instruction address

The instruction address refers to the address at which an operation code is read and, normally it is automatically incremented
every time an operation code is read. However, in an instruction that controls the instruction execution sequence such as a
jump instruction, subroutine call instruction, the branch destination instruction address is specified by an operand.

(1) Direct addressing

The 4-byte data in an operation code becomes an instruction address and is loaded into the PS and PC registers.
This mode is used by the following instructions.

CALL far_proc
BR far_label

(2) PC relative addressing

The 1-byte or 2-byte data in an operation code becomes a displacement from the start address (PC value) of the next
instruction and is added to the PC.

This mode is used by the following instructions.

CALL near_proc
BR near_label
BR short_label
Bcondition short_label : Example BZ short_label

BNZ short_label

(3) Register indirect addressing

The content of any 16-bit register specified by the register specification field in an operation code becomes the
instruction address and is loaded into the PC.

This mode is used by the following instructions.

CALL regptr16 ; Example CALL AW
BR regptr16 ; Example BR IX

Op-code Operand

39

CHAPTER 3 CPU FUNCTIONS

(4) Memory indirect addressing

The 2-byte or 4-byte data in memory specified by the memory addressing (refer to 3.7.2 Data address) indicated by
the addressing mode specification field in an operation code becomes the instruction address and is directly loaded
into the PC or both PS and PC.

This mode is used by the following instructions.

CALL memptr16 ; Example CALL word_var [BW]
CALL memptr32 ; Example CALL dword_var [BW+IX]
BR memptr16 ; Example BR word_var [BR+2]
BR memptr32 ; Example BR dword_var [BP+IY]

3.7.2 Data address

The data address is an address for reading/writing the operand data of each instruction. Normally, an address is a concept
used for memory or I/O, but this operand address includes data in registers, immediate data and I/O data.

(1) Non-memory addressing

Non-memory addressing specifies data in registers, immediate data and I/O data.

(a) Register addressing

Specifies the register from/to which the register field in an operation code reads/writes the operand data.

The register addressing is shown in the following description.

Example of usage:

reg16 : MOV AW, IX ; AW ← IX
reg8 : ADD AL, CH ; AL ← AL + CH

General Description Register that can be described

reg, reg' AW, BW, CW, DW, SP, BP, IX, IY, AL, AH, BL, BH, CL, CH, DL, DH
reg8, reg8' AL, AH, BL, BH, CL, CH, DL, DH
reg16, reg16' AW, BW, CW, DW, SP, BP, IX, IY
sreg PS, SS, DS0, DS1
acc AW, AL

40

CHAPTER 3 CPU FUNCTIONS

(b) Immediate addressing

1-byte or 2-byte data in an operation code becomes read-only operand data. Immediate addressing cannot be
used for the destination operand of an instruction.

Immediate addressing is shown in the following description.

Example of usage:

imm16 : MOV AW, 216 ; AW ← 216
imm8 : SHL AL, 5 ; Shifts AL to left by 5 bits.
pop_value: RET 16 ; Deletes unnecessary 16 bytes on stack.

(c) I/O addressing

I/O addressing specifies data in a 64 K-byte I/O space.
There are two kinds of specification method in I/O addressing as shown below, and these are used by an input/
output instruction.

(I) imm8

8-bit data in an operation code specifies the I/O address.

In this method, specification is limited to a 256-byte space on the lower side of the 64 K-byte I/O space.
This specification method is used by the following two instructions.

IN acc, imm8
OUT imm8, acc

(II) DW

The content of 16-bit register DW indicates the I/O address.
This method can be used to specify across the entire 64 K-byte I/O space. This specification method is used
by the following four instructions.

IN acc, DW
INM dst_block, DW
OUT DW, acc
OUTM DW, src_block

General Description Value That Can Be Described

imm8 0 to FFH (0 to 255 or –128 to +127)
imm16 0 to FFFFH (0 to 65535 or –32768 to +32767)
imm 0 to FFFFH (0 to 65535 or –32768 to +32767)
pop_value 0 to FFFFH (0 to 65535) normally even

41

CHAPTER 3 CPU FUNCTIONS

(2) Memory addressing

Memory addressing specifies the operand data in memory.

This memory addressing is further divided into several modes by the 5-bit memory addressing specification field
placed after an op-code. In all memory addressing modes, a 16-bit offset address from the segment base specified
by the default or segment override is specified. Memory addressing is shown in the following description.

Note Description in an instruction which has no memory addressing specification field

(a) Direct addressing

Indicates the memory address at which 2-byte data in an operation code is the read/write target of operand data.

Example of usage:

MOV byte_var, 216 ; bytemem (offset (byte_var)) ← 216

(b) Register indirect addressing

Indicates the memory address at which the 16-bit register (BW or IX or IY) specified by the memory addressing
specification field in an operation code is the read/write target of operand data.

Example of usage:

MOV word ptr [BW], 10 ; wordmem (BW) ← 10
ADD AL, byte ptr [IX] ; AL ← AL + bytemem (IX)

(c) Based addressing

Indicates the memory address at which the value of the 16-bit base register (BW or BP) specified by the memory
addressing specification field in an operation code added to a sign extended displacement value indicated by 1-
byte or 2-byte data in an operation code is the read/write target of operand data.

When BP is selected as the base register, the default segment register becomes SS, and it can be used when
the data pushed to the stack as an argument in procedure calling is accessed from the procedure.

Example of usage:

MOV word_var [IX+2], 0 ; wordmem (offset (word_var)+IY+2) ← 0
SUB AW, [IX+6] ; AW ← AW – wordmem (BP+IX+6)

Description Data Length

dmemNote 8/16-bit data
mem 8/16-bit data
mem8 8-bit data
mem16 16-bit data

42

CHAPTER 3 CPU FUNCTIONS

(d) Addressing with based index

Indicates the memory address at which the value of the 16-bit base register (IX or BP) specified by the memory
addressing specification field in an operation code added to a sign extended displacement indicated by 1-byte
or 2-byte data in an operation code plus the value of the 16-bit index register (IX or IY) is the read/write target of
operand data. That is, it performs addressing similar to a combination of based addressing and indexed
addressing.

This addressing can be used to access data which has a 2-dimensional array structure, etc.

Example of usage:

MOV word_var [BW+6] [IY+2],0 ; wordmem (offset (word_var) +IY+2) ← 0
SUB AW, [IX+6] ; AW ← AW – wordmem (BP+IX+6)

(3) Bit addressing

Bit addressing specifies 1-bit data in the 8/16-bit register or 8/16-bit memory.

In bit addressing, data is specified by an operand which specifies a register or memory and the 2nd operand of the
bit offset which specifies any 1 bit within it. For the operand which specifies a register or memory, any of register
addressing or memory addressing can be used, and the following three kinds of bit offset can be used.

For the bit offset, only the lower 3 bits are valid in the case of byte register/memory and only the lower 4 bits are valid
in the case of word register/memory and their ranges are 0 to 7 and 0 to 15, respectively.

Example of usage:

TEST1 word ptr [BW+2], 5 ; Check bit 5 of wordmem (BW+2).
CLR1 byte var, CL ; Set bit 1 specified by CL of bytemem (offset (byte_var)) to 0.

Description 1 Bit Specified

imm3 1-bit data in byte register/memory
imm4 1-bit data in word register/memory
CL 1-bit data in byte/word register/memory

43

CHAPTER 3 CPU FUNCTIONS

3.8 Faster Execution of Instructions

The V30MX is provided with the following hardware to shorten instruction execution time. For details of each function, refer
to 3.1.4 Program counter (PC) and 3.3.1 (1) Prefetch pointer (PFP), and 3.3.2 Execution unit (EXU).

• EXU internal dual data bus
• Effective address generator
• Temporary register/shifter (TA/TB)
• Loop counter (LC) and prefetch pointer (PFP)

3.8.1 Dual data bus system

In order to reduce the number of processing steps necessary for instruction execution, a dual data bus system composed of the
main data bus (16 bits) and subdata bus (16 bits) is used. Use of this system reduces processing time for addition/subtraction,
logical operation, compare instruction, etc., by approximately 30 % compared with the single bus system.

Figure 3-11. Dual Data Bus System

Example: ADD AW,BW:AW ← AW+BW

Single bus Dual bus

Step 1 ALU ← AW ALU ← AW, BW
2 ALU ← BW AW ← ALU
3 AW ← ALU

Register

Temporary register
shifter

ALU

Subdata bus Main data bus

1616

44

CHAPTER 3 CPU FUNCTIONS

3.8.2 Effective address generator (EAG)

This is a circuit to calculate an effective address necessary for memory accessing (refer to 3.5 Effective Address) at high
speed. In the microprogram system, 5 to 12 clocks were needed for calculation of an effective address. However, with this
dedicated hardware only 2 clocks are needed in all addressing modes, achieving operation several times faster.

3.8.3 Temporary register/shifter A and B (TA, TB)

Temporary register/shifter A and B (TA, TB) are available for multiplication/division and shift/rotate instructions.

Use of this circuit increases the speed of execution, especially, of multiplication/division instructions approximately 4 times that
of the microprogram system.

• TA+TB : 32-bit temporary register/shifter (for multiplication/division instructions)
• TB : 16-bit temporary register/shifter (for shift/rotate instruction)

3.8.4 Loop counter (LC)

Counts the number of loops of the primitive block transfer/input/output instructions controlled by the repeat prefix and the
number of shifts of multi-bit shift/rotate instructions.

For example, in the case of multi-bit rotate of a register, the LC is as follows and the speed is doubled in average compared to
the microprogram system.

RORC AW,CL;CL = 5

Microprogram system LC system
8 + 4 × 5 = 28 clocks 7 + 5 = 12 clocks

3.8.5 Program counter (PC) and prefetch pointer (PFP)

When performing a prefetch, provision of hardware for both the PFP which addresses the program memory and the PC which
addresses the program memory currently to be executed shortens the instruction execution time of branch, call, return break
instructions by the time corresponding to several blocks compared to hardware with only one PFP.

45

CHAPTER 3 CPU FUNCTIONS

3.9 EMS Functions

The V30MX supports EMS memory of a maximum of 16 M bytes. When EMS is used, the higher 6 bits of the address are
extended to 10 bits, totaling to 24 bits. This means mapping in 16 K-byte units. The lower 14 bits of the address are used
without conversion irrespective of whether the EMS function is used or not.

The mapping source of 16 K bytes in this memory space is called the physical page and the mapping destination of 16 K bytes
in the EMS space is called logical page. Furthermore, an aggregate of physical pages is called page frame.

In the case of the V30MX, addresses of the logical pages corresponding to 12 physical pages can be set. Therefore, there will
be no problem if we assume that the physical page and page frame have the same meaning. The subsequent pages will explain
the page frame as also representing physical page.

Of the 12 page frames, 8 page frames are fixed at 80000H to 9FFFFH in the memory space and other 4 page frames are
allocated to 64 K bytes at one of C0000H to CFFFFH, D0000H to DFFFFH, or E0000H to EFFFFH.

The 12 page frames can be mapped on any logical pages in the EMS space (16 K bytes: however, the lower 16 bits are
allocated to one of 0000H to 3FFFH, 4000H to 7FFFH, 8000H to BFFFH or C000H to FFFFH) in the EMS space.

3.9.1 EMS control registers

The EMS control registers are allocated to the I/O space and accessed by input/output instructions. However, when accessing
the EMS control register (0027H), write 01H to I/O address 0026H beforehand.

(1) EMS control indirect specification register (IDX) [I/O address: 0026H]

This is an indirect specification register to enable accesses to the EMS control register.

When any value other than 01H is set in this register, the EMS control register cannot be accessed (the I/O space
other than the core is accessed).

After a reset, this register is initialized to 00H. When accessing the EMS control register after a reset, set 01H in this
register first. In this register, all 8 bits are valid and any value can be set.

(2) EMS control register (EC) [I/O address: 0027H]

EMSPF1 and EMSPF0 perform address setting of 4-page page frames for which addresses can be selected.

EMSEN specifies collectively whether the EMS function for full page frames is enabled or not. If this bit disables EMS,
settings of all other EMS related registers are disabled and normal memory accesses are performed.

The EMS control indirect specification register and this register cannot be set by an word access all together at a time.
Be sure to set 01H in the EMS control indirect specification register by a byte access and then access this register.

Register I/O Byte Reference Item

EMS control indirect specification register 0026H (1)

EMS control register 0027H (2)

EMS address register 006CH (5)

EMS data register (lower byte) 006EH (3)

EMS data register (higher byte) 006FH (4)

46

CHAPTER 3 CPU FUNCTIONS

Figure 3-12. EMS Control Register (EC)

(3) EMS data register (lower byte) (EDL0 to EDL11) [I/O address: 006EH]

(4) EMS data register (higher byte) (EDH0 to EDH11) [I/O address: 006FH]

For EMSA23 to EMSA14, the higher 10 bits of the logical page corresponding to each page frame are specified.

EMSPEN enables/disables mapping of each page frame onto the EMS space.

Setting 1 will convert a memory access for the corresponding page frame to the EMS address set by EMSA23 to
EMSA14.

Setting 0 will not perform conversion.

This register is accessed by an input/output instruction by indirectly specifying the higher 6 bits of the page frame
address in the EMS address register.

7 6 5 4 3 2 1 0

EMSPF1 EMSPF0 0 EMSEN 0 0 0 0

EMSEN EMS Function Enable/Disable

0 EMS disabled

1 EMS enabled

EMSPF1 EMSPF0 Page Frame Address

0 0 C0000H to CFFFFH

0 1 D0000H to DFFFFH

1 0 E0000H to EFFFFH

1 1 Setting prohibited

47

CHAPTER 3 CPU FUNCTIONS

Figure 3-13. EMS Data Register (EDL11 to EDL0, EDH11 to EDH0)

(a) EDL11 to EDL0

(b) EDH11 to EDH0

(5) EMS address register (EA) [I/O address: 006CH]

This register is used to indirectly specify 12 pairs of EMS data registers.

Specifies the higher 6 bits of the address of each page frame.

In other words, the value set in this register is one of the following 12 values.

• 8 values: 80H, 84H, 88H, 8CH, 90H, 94H, 98H, 9CH

• Any 4 values below depending on the values of EMSPF1 and EMSPF2

→

4 values: C0H, C4H, C8H, CCH

→

 4 values: D0H, D4H, D8H, DCH

→

 4 values: 0DH, E4H, E8H, ECH

7 6 5 4 3 2 1 0

EMSA21 EMSA20 EMSA19 EMSA18 EMSA17 EMSA16 EMSA15 EMSA14

EMSA21 to EMSA14 21st to 14th bits of logical page address

7 6 5 4 3 2 1 0

EMSPEN 0 0 0 0 0 EMSA23 EMSA22

EMSA23 to EMSA22 23rd and 22nd bits of logical page address

EMSPEN Enable/disable EMS function of each page frame

0 Disabled

1 Enabled

48

CHAPTER 3 CPU FUNCTIONS

Figure 3-14. EMS Address Register (EMSPA7 to EMSPA2)

3.9.2 Caution on accessing EMS control registers

In an access cycle to the above EMS control registers, the control signals in the table below remain inactive as follows. This
access is always performed with 0 waits without regard to input of a READY signal.

3.9.3 EMS setting example

The following example illustrates a case where the EMS page frame is set only at C0000H to CFFFFH and this page frame is
mapped on to 120000H to 12FFFFH of the physical memory.

; Selection of EMS control register
; This setting can be done only the first one time.

mov al, 01h
out 26h, al

; Setting of EMS control register
; EMS function enabled, page frame selected

mov al, 00010000b
out 27h, al

; Page frame 80000H to 9FFFFH is unused.

mov dl, 80h ; DL = 80H, 84H, 88H, 8CH, 90H, 94H, 98H, 9CH
mov cx, 8a

7 6 5 4 3 2 1 0

EMSPA7 EMSPA6 EMSPA5 EMSPA4 EMSPA3 EMSPA2 0 0

EMSPA7 to EMSPA2
Higher 6 bits of the page frame address (higher
6 bits of 20-bit address specifying 1M space)

Pin Value when Accessing EMS Control Register

RDB H (inactive)

WRB

BUFENB

BUFRBW

UBEB

49

CHAPTER 3 CPU FUNCTIONS

inhph:

; Set the page frame number (address) that you want to select to EMS address register.
; EMS data register is set to indirect address via 006E to 006FH.

mov al, dl
out 6ch, al

; Write 00H to EMS data higher byte register (register corresponding to address set to 006CH)
; and disable EMS function.

xor al, al
out 6fh, al

; Add 04H to DL register and calculate page frame number (address) to be selected next.
; Ends when CX register is set to 0.

add al, 04h
loop inhph

; Setting of page frame C0000H to C3FFFFH

mov al, 0c0h
out 6ch, al ;indirect specification of C0000H

; Setting to physical address 120000H

mov ax, 8048h ; EMS enabled, bit23 to bit14 at 120000H
out 6eh, ax ; EMS data register (word access)

; Setting of page frame C4000H to C7FFFH

mov al, 0c4h
out 6ch, al ; Indirect specification of C4000H

; Setting to physical address 124000H

mov ax, 8049h ; EMS enabled, bit23 to bit14 at 124000H
out 6eh, ax ; EMS data register (word access)

; Setting of page frame C8000H to CBFFFH

mov al, 0c8h
out 6ch, al ; Indirect specification of C8000H

; Setting of physical address 128000H

mov ax, 804ah ; EMS enabled, bit23 to bit14 at 128000H
out 6eh, ax ; EMS data register (word access)

; Setting of page frame CC000H to CFFFFH

mov al, 0cch
out 6ch, al ; Indirect specification of CC000H

50

CHAPTER 3 CPU FUNCTIONS

; Setting of physical address 12C000H

mov ax, 804bh ; EMS enabled, bit23 to bit14 at 12C000H
out 6eh, ax ; EMS data register (word access)

51

CHAPTER 4 BUS CONTROL FUNCTIONS

4.1 Interface between V30MX and Memory

As the V30MX uses a 16-bit data bus, it is capable of transferring 16-bit word data in 1 bus cycle. However, this applies only
when an address generated by an instruction is even (A0 = 0), and if it is odd (A0 = 1)a word data transfer requires 2 bus cycles.

Figure 4-1 shows the interface between the V30MX and memory.

Figure 4-1. Interface between V30MX and Memory

In Figure 4-1, A0, when active low enables the lower bank byte data of memory. Furthermore, aside from the information from
the address bus, the UBEB signal is output and when active low this also enables the byte data of the memory higher bank.

• When accessing word data at odd address

In the first bus cycle, UBEB = 0 and A0 = 1, and only the higher byte is accessed and then UBEB = 1 is automatically
set, the lower 16 bits (A (15:0)) of the address information is incremented (+1). That is, A0 = 0 is set, and the lower byte
at the next address is accessed.

• When accessing word data at even address

Word data is accessed in 1-bus cycle with UBEB = 0 and A0 = 0. Table 4-1 shows the relationship between the type of
operand, UBEB, A0 and number of bus cycles.

Address bus (19)

Memory higher bank
512 K bytes

Memory lower bank
512 K bytes

19

BSEL BSEL

A (19:1)

A0
UBEB 19

8 D (15:8) 8 D (7:0)

Data bus (16)D (15:0)

52

CHAPTER 4 BUS CONTROL FUNCTIONS

Normally, the V30MX performs an access (prefetch) of an operation code in word units. However, when a branch to an odd
address takes place, only 1 byte at that odd address is fetched and subsequent bytes are fetched again in word units again.

When a vector table address is generated from the vector number (0 to 225), an even address is always generated, and so an
access to the interrupt vector table is always performed as word data at an even address. Therefore, a vector table access to
one interrupt is always performed in 2 bus cycles for the 2 words of the segment base and offset.

4.1.1 Cautions on accessing word data

When accessing word data by the V30MX, ensure that all the data that can be checked by the program may be placed at an
even address. When it is placed at an odd address, the result will be as follows.

One bus cycle for a memory access requires 2 clocks. Therefore, every time word data at an odd address is accessed, two
extra clocks of the instruction execution time are required compared to accessing word data at an even address. This applies
when executing an instruction which has more than one word data access.

In the case of a word data transfer from memory to memory, 2 memory accesses are required for a read from the source and
a write to the destination and so the execution time becomes the maximum when both are odd addresses.

This problem of odd addresses also happens in stack manipulation. Registers, etc. are automatically saved to the stack by
interrupt servicing, but these are all word data and so when processed at an odd address, note that the number of bus cycles
is doubled and the interrupt response time is delayed.

Example: Execution time of MOV reg, mem instruction (number of clocks)

Byte data: 9 :
Word data: 11 : For odd address

9 : For even address

This is an example in which one word data access is performed.

Table 4-1. V30MX Data Access

Operand UBEB A0 Number of Bus Cycles

Word at even address 0 0 1

Word at odd address Note 1 0 1 2

Note 2 1 0

Byte at even address 1 0 1

Byte at odd address 0 1 1

Notes 1. 1st bus cycle
2. 2nd bus cycle

53

CHAPTER 4 BUS CONTROL FUNCTIONS

4.2 Accessing I/O Space

The segment system is not applied to an I/O address like memory.

In I/O address output timing, 0 is output to all the higher 4 bits (A (19:16)) of the address bus.

Data can be transferred between the V30MX and I/O in both byte units or word units and both an 8-bit I/O device and 16-bit I/
O device can be connected. However, like memory for a word data access, 1 bus cycle for an even address and 2 bus cycles
for an odd address are used.

When accessing an 8-bit I/O device, A0 of the I/O address information is only used for device selection and values higher than
A1 are used for device selection and selection of several registers within one device. That is, all the internal registers of the I/
O device at an even address are also even and all the internal registers of the I/O device at an odd address are selected with
an odd number.

Use of a memory mapped I/O configuration (using the memory area by allocating it for I/O) allows the I/O to be placed in a 1
M-byte memory space not in the I/O space.

Using the memory mapped I/O configuration, it is possible to perform a variety of addressing modes and operation processing
for the memory directly to the I/O device. For example, using a bit manipulation instruction for the memory, it is possible to test
(decide 1 or 0), set (1), clear (0), or invert one line of an I/O port.

Caution However, with the memory mapped I/O, all control signals output from the V30MX are for the memory
and so the I/O device is distinguished only by address information. Therefore, special care is
required to avoid contention between the addresses of variables and static data, etc., and the
addresses allocated to the I/O.

4.3 Read Timing of Memory and I/O

The V30MX executes one bus cycle in at least 2 clocks. The first clock is called TS, and the next clock TC.

The V30MX performs pipelined addressing.

< 1 > Outputs an address 1/2 clock earlier than TS of the relevant cycle, that is, in synchronization with a clock fall. At the
same time, it outputs MIOB and BS2 indicating the memory R/W or I/O RW cycle.

< 2 > In synchronization with a clock rise which is the start of TS, the address strobe signal ASTB changes to a high level,
while BS0 retains a high level. At the same time it outputs UBEB and BUSLOCKB. These UBEB and BUSLOCKB
retain those values until the bus cycle ends.

< 3 > In synchronization with a clock rise of TS, the address strobe signal ASTB changes to a high level.

< 4 > TS ends in 1 clock and TC starts. ASTB returns to a low level in synchronization with a clock rise which is the start
of TC. On the other hand, the RDB signal which requests the peripheral device to output data and the BUFENB
and BUFRBW signals change to a low level to avoid collision between the RDB signal requesting the peripheral
device to output data and a signal on the data bus.

< 5 > In synchronization with a fall of the first TC clock, the address for the next cycle, MIOB and BS2 are output.

< 6 > At the end of TC in synchronization with a clock rise, the READY input is sampled. If READY is low, the bus cycle
is terminated and data is fetched. RDB, BUFENB and BUFRBW change to a high level. If READY is high, the bus
cycle continues and TC is repeated.

At this time, RDB, BUFENB and BUFRBW retain low levels.

54

CHAPTER 4 BUS CONTROL FUNCTIONS

Figure 4-2. Read Timing of Memory and I/O (1 wait)

TS TSTCTC
(Next cycle)

CLK

A (23:0),

BUFRBW

BS0, BS1

D (15:0)

READY

ASTB

MIOB, BS2

UBEB,
BUSLOCKB

Hi-Z Hi-Z

BUFENB

RDB

55

CHAPTER 4 BUS CONTROL FUNCTIONS

4.4 Write Timing of Memory and I/O

< 1 > Like the read cycle, outputs an address 1/2 clock earlier than TS of the relevant cycle, that is, in synchronization
with a clock fall. At the same time, it outputs MIOB and BS2 indicating the memory R/W or I/O RW cycle.

< 2 > In synchronization with a clock rise which is the start of TS, BS0 changes to a low level, while BS1 retains a high
level (indicating a write cycle). At the same time it outputs UBEB and BUSLOCKB. These UBEB and BUSLOCKB
retain those values until the bus cycle ends.

< 3 > In synchronization with a clock rise of TS, the address strobe signal ASTB changes to a high level. Output of data
to be written is started and BUFENB changes to a low level. BUFRBW retains a high level in the write cycle.

< 4 > TS ends in 1 clock and TC starts. ASTB returns to a low level in synchronization with a clock rise which is the start
of TC. On the other hand, the WRB signal which requests the peripheral device to input data changes to a low level.

< 5 > In synchronization with a fall of the first TC clock, the address for the next cycle, MIOB and BS2 are output.

< 6 > At the end of TC in synchronization with a clock rise, the READY input is sampled. If READY is low, the bus cycle
is terminated and WRB changes to a high level indicating the peripheral device of the data fetch timing. If READY
is high, the bus cycle continues and TC is repeated.

At this time, WRB and BUFENB retain low levels.

< 7 > In <6>, a low-level READY signal is sampled and in synchronization with a clock rise 1/2 clock later the data output
ends. BUFENB changes to a high level and the bus cycle ends.

56

CHAPTER 4 BUS CONTROL FUNCTIONS

Figure 4-3. Write Timing of Memory and I/O (1 wait)

TS TSTCTC
(Next cycle)

CLK

A (23:0),

BUFRBW

BS0, BS1

D (15:0)

READY

ASTB

MIOB, BS2

UBEB,
BUSLOCKB

Hi-Z Hi-Z

BUFENB

WRB

High

57

CHAPTER 4 BUS CONTROL FUNCTIONS

4.5 Bus Hold Function

When HLDRQ becomes active high, an HLDAK signal is output.

While the HLDAK signal is active, it makes the address bus, data bus and some control signals go to high impedance and hands
over control of the bus cycle related signals to the device which requested a hold (refer to (24) in 2.2 Description of Pin
Functions).

58

CHAPTER 4 BUS CONTROL FUNCTIONS

Figure 4-4. Bus Hold Timing (Write Operation → Bus Hold State)

TS THTCTC

CLK

A (23:0),

BUFRBW

BS0, BS1

D (15:0)

READY

ASTB

MIOB, BS2,
UBEB,

BUSLOCKB

Hi-Z

Hi-Z

BUFENB

WRB

Ti TH

Hold StateWrite Operation

HLDRQ

HLDAK

Hi-Z

Hi-Z

Hi-Z

Hi-Z

59

CHAPTER 4 BUS CONTROL FUNCTIONS

Figure 4-5. Bus Hold Timing (Bus Hold State → Write Operation)

TH TSTH

CLK

A (23:0),

BUFRBW

BS0, BS1

D (15:0)

READY

ASTB

MIOB, BS2,
UBEB,

BUSLOCKB

Hi-Z

Hi-Z

BUFENB

WRB

TH

Write Operation

HLDRQ

HLDAK

Hi-Z

Hi-Z

Hi-Z

Hi-Z

Hold State
TH TC

60

[MEMO]

61

CHAPTER 5 INTERRUPT FUNCTIONS

Interrupts of the V30MX are roughly divided into two kinds; hardware interrupts and software interrupts. These interrupts are
all vectored interrupts which reference a vector table. An interrupt vector table stores the start address of an interrupt service
routine.

When an interrupt is generated, the V30MX references the fixed 4 bytes (fixed vector) in the vector table corresponding to the
interrupt source or any 4 bytes (variable vector) specified each time and branches to the address stored there (start address of
the interrupt service routine).

The interrupt vector table is assigned to a 1 K-byte area 000H to 3FFH of the memory space and can define a maximum of 256
vectors.

Table 5-1 shows the number of interrupt source clocks processed, vector numbers and priority order.

Figure 5-1 shows the interrupt vector table configuration.

Table 5-1. Interrupt Source List

Interrupt Source

Number of Clocks
ProcessedNote

Vector No. Priority Order

V30MX

Hardware NMI (rising edge active) 38 2 2

INT (high level active) 49 32 to 255 3

Software DIVU divide error 45 0 1

DIV divide error 45 to 55

CHKIND boundary over 53 to 56 5

BRKV 40 4

BRK 3 38 3

BRK imm8 32 to 255

BRKEM imm8

CALLN imm8 38

BRK flag (single step) 1 4

Note The number of clocks after execution of an instruction is aborted by an interrupt until the program branches
to the start address of the interrupt service routine (progression of the wait state into the memory bus cycle
and bus hold request are not taken into account).

62

CHAPTER 5 INTERRUPT FUNCTIONS

Figure 5-1. Interrupt Vector Table Configuration

For vectors 0 to 5, the interrupt sources to be used are specified and vectors 6 to 31 are reserved and are not available for
general use.

For vectors 32 to 255, 4 kinds of instructions, BRK imm8 instruction, BRKEM instruction, INT input and CALLN instruction (in
emulation) are possible for general use.

One interrupt vector consists of 4 bytes and the higher address 2 bytes are loaded to the PS as a base address pointer (program
segment value) and the lower address 2 bytes are loaded to the PC as an offset value.

Example: Vector 0

002H 003H

000H 001H

PS ← (003H, 002H)
PC ← (001H, 000H)

Vector 255

Vector 32

Vector 31

Vector 6

Vector 5

Vector 4

Vector 3

Vector 2

Vector 1

Vector 0

3FFH

3FCH
3FBH

000H

084H
083H

080H
07FH

07CH
07BH

02CH
02BH

018H
017H

014H
013H

010H
00FH

00CH
00BH

008H
007H

004H
003H

General use
 • BRK imm8 instruction
 • BRKEM instruction
 • INT input
 • CALLN instruction

Dedicated use

Reserved

CHKIND instruction

BRKV instruction

BRK 3 instruction

NMI input

Break flag

Divide error

63

CHAPTER 5 INTERRUPT FUNCTIONS

When creating a program, initialize the content of each vector used based on the example in Figure 5-1 in the beginning of the
program.

The following are the basic steps when jumping to an interrupt service routine.

TA ← vector lower word data (offset value)

TC ← vector higher word data (program segment value)

SP ← SP-2, (SP+1, SP) ← PSW

IE ← 0, BRK ← 0, MD ← 1

SP ← SP-2, (SP+1, SP) ← PS

PS ← TC

SP ← SP-2, (SP+1, SP) ← PC

PC ← TA

Caution Since the interrupt enable flag (IE) and break flag (BRK) of the program status word (PSW) are reset
(0) when interrupt servicing is started, no maskable interrupt (INT) or single step interrupt is
acknowledged any longer.

64

CHAPTER 5 INTERRUPT FUNCTIONS

5.1 Hardware Interrupt

There are two kinds of hardware interrupt.

• Non-maskable interrupt (NMI)

• Maskable interrupt (INT)

5.1.1 Non-maskable interrupt (NMI)

NMI is a non-maskable interrupt and cannot be disabled by software. Whenever there is an input to the NMI pin from a
peripheral device, it is always acknowledged and detected on a rising edge.

NMI takes precedence over INT and is used to cope with abrupt variation of the normal power supply (instantaneous power
failure) and memory error, bus error, etc.

No acknowledge cycle is issued by this interrupt and no INTAK signal is output, either.

5.1.2 Maskable interrupt (INT)

In the 1st acknowledge cycle, it synchronizes with the interrupt controller and in the 2nd acknowledge cycle it reads an interrupt
vector (refer to Figure 5-2 Interrupt Acknowledge Cycle).

< 1 > In synchronization with a clock fall in the previous cycle, MIOB and BS2 change to a low level to indicate the
acknowledge cycle. ASTB is also output.

< 2 > At the start of TS, BUSLOCKB, BS0 and BS1 change to a low level.

< 3 > At the start of the 1st TC, BS0 and BS1 are driven high. INTAKB also changes to a low level.

< 4 > Like the normal R/W bus cycle, the input to READY is sampled at the end of each TC and any number of waits can
be inserted. Figure 5-2 shows a case with 1 wait.

< 5 > INTAKB retains a low level during TC.

< 6 > After the 1st acknowledge cycle, 3 cycles of the Ti state are inserted. BUSLOCKB holds a low level after <2> during
the Ti state.

< 7 > The operation of the 2nd acknowledge cycle is almost the same as the 1st acknowledge cycle. However,
BUSLOCKB is driven high (inactive) from the start of TS in the 2nd acknowledge cycle.

< 8 > At the end of the last TC, an interrupt vector is read from the lower byte of the data bus. Then, at least 7 cycles of
Ti are inserted.

The CPU does not drive the data bus until a fall of the last Ti clock. During this period, the address bus and UBEB are driven
but those values are invalid.

If the prefetch queue is empty immediately before interrupt acknowledge, a code fetch cycle may be started between the 1st
acknowledge cycle and 2nd acknowledge cycle (refer to Figure 5-3 Interrupt Acknowledge Cycle (with code fetch)).

65

CHAPTER 5 INTERRUPT FUNCTIONS

Figure 5-2. Interrupt Acknowledge Cycle

TS TSTCTC

CLK

A (23:0)

BUFRBW

BS0, BS1

D (15:0)

READY

ASTB

MIOB, BS2

UBEB

BUSLOCKB

BUFENB

RDB

Ti TC

INTA cycle2INTA cycle1

INTAKB

TC

VECTOR

Ti Ti TC Ti

Hi-Z Hi-Z

66

CHAPTER 5 INTERRUPT FUNCTIONS

Figure 5-3. Interrupt Acknowledge Cycle (with code fetch)

TS TiTiTC

CLK

A (23:0)

BUFRBW

BS0, BS1

D (15:0)

READY

ASTB

MIOB, BS2

UBEB

BUSLOCKB

BUFENB

RDB

TS TS

INTA2INTA1

INTAKB

TC

VECTOR

TC Ti TC Ti

CODE FETCH

CODE
Hi-Z Hi-Z Hi-Z

67

CHAPTER 5 INTERRUPT FUNCTIONS

5.2 Software Interrupts

Software interrupts take precedence over hardware except a BRK flag (single step) interrupts.

They can be divided as follows.

(1) Interrupt by instruction result

• Divide error by DIV instruction or DIVU instruction
• Boundary over detection by CHKIND instruction

When the processing result of an instruction is invalid, an interrupt is automatically generated to allow exception
handling.

(2) Interrupt by conditional break (execution of BRKV instruction)

In execution of a BRKV instruction, if the V flag is set (1), an interrupt is generated. It is used for processing an
overflow of the operation result.

(3) Interrupt by unconditional break instruction

• 1-byte break instruction (BRK 3)
• 2-byte break instruction (BRK imm8 (≠3))

This interrupt is used when branching to a subroutine by a system call or inter-segment call without being aware of
the branch destination.

(4) BRK flag (single step) interrupt

This is a useful function for program debugging, etc.

This interrupt is controlled by the BRK flag of PSW bit 8. However, it is manipulated with the PSW saved to the stack,
not by an instruction which directly sets/resets the BRK flag and set/reset processing is indirectly performed by
restoring it to the PSW.

When the BRK flag is set, after the next one instruction is executed, the interrupt routine (monitor program, etc.)
specified by vector 1 is started and the BRK flag is also reset together with the IE flag at that time.

Therefore, once the vector 1 interrupt is started, interrupt routine instructions are not executed one by one but
continuously in the same way as for other interrupts. Here, the internal registers, flag state, memory content, etc.,
can be checked and dumped.

In this interrupt routine, the number of single steps is checked and if it is possible to terminate the single step
operation, the BRK flag in the stack is reset by a memory manipulation instruction and returned. This allows
instructions to be executed continuously after returning to the main routine.

When returning without manipulating the BRK flag, BRK = 1 saved in the stack is restored to the PSW and after
execution of one instruction in the main routine a vector 1 interrupt is generated again.

68

CHAPTER 5 INTERRUPT FUNCTIONS

5.3 Timing at which Interrupt is Not Acknowledged

In the timing shown in (1) to (4) below, that is, between an instruction in which data is directly set in the segment register or 3
types of prefix and the following one instruction, no hardware interrupt or single step interrupt is acknowledged. Furthermore,
between the EI instruction in (5) and the following one instruction only the INT interrupt is not acknowledged.

With the following 5 timings, no interrupt is acknowledged.

(1) Between each of MOV sreg, reg 16; MOV sreg, mem16; MOV reg16, sreg; MOV mem16, sreg; POP sreg instructions
and the next instruction

(2) Between segment override prefix (PS:, SS:, DS0:, DS1:) and the next instruction

(3) Between repeat prefix (REPC, REPNC, REP, REPE, REPZ, REPNZ) and the next instruction

(4) Between BUSLOCK instruction and the next instruction

(5) Between EI instruction and the next instruction (only INT interrupt is not acknowledged)

However, an NMI request signal generated in interrupt disable timings in (1) to (4) is held pending internally and acknowledged
after execution of the next one instruction is completed.

69

CHAPTER 5 INTERRUPT FUNCTIONS

5.4 Interrupt Servicing in Execution of Block Processing Instruction

When a hardware interrupt is generated in execution of a primitive block transfer/comparison, input instruction, the V30MX
acknowledges it and branches to the corresponding interrupt address.

However, in a block processing instruction, immediately after completion of the bus cycle in which an interrupt is generated, the
interrupt may not be acknowledged. In that case, it takes several bus cycles after generation of the interrupt until the V30MX
can acknowledge the interrupt. Table 5-2 shows the number of bus cycles. In this table, the bus cycle in which an interrupt is
generated is counted as the first bus cycle.

Table 5-2. Number of Bus Cycles Required until Interrupt is Acknowledged

Instruction IX IY
Number of Bus Cycles Required until

Interrupt is Acknowledged

MOVBKW Even Even 2 to 4

Even Odd 3 to 6

Odd Even 2 to 5

Odd Odd 3 to 7

MOVBKB – – 2 to 4

CMPBKW Even Even 1, 2

Even Odd 1 to 3

Odd Even 1 to 3

Odd Odd 1 to 4

CMPBKB – – 1, 2

CMPMW – Even 1

– Odd 1, 2

CMPMB – – 1

LDMW Even – 1

Odd – 1, 2

LDMB – – 1

STMW – Even 3, 4

– Odd 3 to 5

STMB – – 3, 4

70

CHAPTER 5 INTERRUPT FUNCTIONS

Example 1. When an interrupt request is generated in execution of MOVBKB instruction

Example 2. When an interrupt request is generated in execution of STMB instruction

If at the start of an interrupt service routine started in this way CW which is operating as a counter for the block data is saved
to the stack and CW is restored at the end of the interrupt service routine and then the original routine is returned to by an RETI
instruction, the suspended block processing can be restarted.

At this time, if a prefix is placed before the block processing instruction, the return address is modified (1 address for one kind
of prefix) and saved so that up to 3 kinds of prefix are stored and can be returned to the address at which the prefix is placed
when returning from the interrupt service routine.

In order to use these functions effectively, set the sum of prefixes placed before a block processing instruction to no more than 3.

Example 1. Good example

In the following example, after returning from NMI interrupt servicing, BUSLOCK, REPC, SS: all function
effectively.

NMI → BUSLOCK

NMI → REPC

NMI → CMPBKB SS: src-block, dst-block

Example 2. Bad example

In the following example, it is accepted that there are 3 kinds of prefix (all the repeat prefixes are of the same
kind) and modification is carried out for returns and addresses corresponding to 3 addresses, but actually
the prefixes occupy 4 addresses. Therefore, it is not possible to return to BUSLOCK from the interrupt
service routine and the program returns to REP.

NMI → BUSLOCK

NMI → REP

NMI → REPC

NMI → CMPBK SS: src-block, dst-block

MOVBKB bus cycle

Interrupt servicing

INT input or NMI input

STMB bus cycle

Interrupt servicing

INT input or NMI input

71

CHAPTER 6 STANDBY FUNCTIONS

6.1 Setting of Standby Mode

Executing a HALT instruction sets the standby mode.

6.2 Standby Mode

When the standby mode is entered, BS2 to BS0 and MIOB output a HALT status. However, ASTB is not activated but remains
low at this time.

72

CHAPTER 6 STANDBY FUNCTIONS

Figure 6-1. Timing in Standby Mode

Ti TiTiTS

CLK

A (23:0)

BUFRBW

BS0, BS1

D (15:0)

READY

ASTB

UBEB,
BUSLOCKB

Hi-Z

High

BUFENB

RDB, WRB

TC

BS2

MIOB

73

CHAPTER 6 STANDBY FUNCTIONS

6.3 Release of Standby Mode

There are 2 ways of releasing the standby mode once set; release by a hardware interrupt and release by RESET input.

6.3.1 Release by hardware interrupt

The standby mode is released by a hardware interrupt (NMI input or INT input).

(1) Release by NMI input

Interrupt servicing (NMI routine) is started from the standby mode and the standby mode is released.

When an RETI instruction is executed at the end of the NMI routine, the program returns to the original mode and is
restarted from the instruction following the HALT instruction.

(2) Release by INT input

The operation after a release differs depending on an interrupt enabled state (IE flag of PSW = 1) or interrupt disabled
state (IE flag of PSW = 0).

(a) Interrupt enabled state

When an RETI instruction is executed at the end of the INT routine, the program returns to the original mode and
is restarted from the instruction following a HALT instruction or HLT instruction.

(b) Interrupt disabled state

The program returns to the mode in which the standby mode was started and is restarted from a HALT instruction
or the instruction following a HLT instruction.

Caution When releasing the standby mode by INT input with an interrupt disabled, keep the INT signal
high until execution of a HALT instruction or the instruction following an HLT instruction is
started, that is, for 15 clocks (when it is supposed that the queue is empty with the HALT
instruction or HLT instruction executed).
Furthermore, if a wait state has been inserted, add the time corresponding to the wait states.

6.3.2 Release by RESET input

If RESET is input in standby mode, a normal reset operation starts unconditionally. Therefore, the state retained in standby
mode becomes invalid and the program that has been stopped in standby mode cannot be restarted.

74

[MEMO]

75

CHAPTER 7 RESET FUNCTIONS

When a high level is input to the RESET pin for 4 clocks or more, the V30MX pins change to the statuses shown in Table 7-1.
They retain those values while the high level is input.

Table 7-1. Pin Status after Reset

Pin After Reset

A(23:0) Hi-Z

D(15:0) Hi-Z

UBEB Hi-Z

RDB Hi-Z

QS0, QS1 L

BUSLOCKB Hi-Z

BS2 to BS0 Hi-Z

MIOB Hi-Z

PS0 L

PS1 H

PS2 L

PS3 L

WRB Hi-Z

INTAKB H

ASTB L

BUFRBW Hi-Z

BUFENB Hi-Z

HLDAK L

76

CHAPTER 7 RESET FUNCTIONS

Each register is initialized to the value shown in Table 7-2 after a reset.

Table 7-2. Initial Values of Registers after Reset

Register Initial Value

PC 0000H

PFP 0000H

PS FFFFH

SS, DS0, DS1 0000H

AW, BW, CW, DW not decided

SP, BP not decided

IX, IY not decided

PSW 1111000000000010B

IDX 00H

EC 00H

EDL11 to EDL0, EDH11 to EDH0 00H

EA 00H

77

CHAPTER 8 TEST FUNCTIONS

The V30MX has a unit test function using the test bus like other mega-functions. CHAPTER 8 describes this test function.

The V30MX test function is almost the same as a mega-function, but note that it is different only in the following points.

• In unit test mode and standby test mode, the 3-state output normal pins are not set to high impedance but output mode.

8.1 Test Pins

In addition to the normal pins (A (23:0), D (15:0), RDB, etc.) the V30MX has the following test pins.

8.1.1 Test bus pins (TBI (27:0), TBO (71:0))

The test bus pins are used in place of the normal pins in unit test mode.
Refer to the User’s Manual – Design of each family for details.

8.1.2 BUNRI, TEST

Used for selection of normal/unit test/standby test modes.

8.2 Normal Mode

This is a mode that the customers normally use.

When the BUNRI pin is low, the normal pin is valid and normal mode is entered. At this time, input from TBI (27:0) is ignored
and TBO (71:0) go high impedance.

Table 8-1. Test Mode Settings

BUNRI TEST Mode

0 X Normal mode

1 0 Standby test mode

1 1 Unit test mode

78

CHAPTER 8 TEST FUNCTIONS

8.3 Unit Test Mode and Standby Test Mode

When the BUNRI pin is high, input to the normal pins is ignored (invalid) and the test mode is entered. There are two test modes;
unit test mode and standby test mode.

In either case, A (23:0) and D (15:0) go to high impedance.

8.3.1 Unit test mode

When both the BUNRI pin and TEST pin are high, the unit test mode is entered. In unit test mode, input from the normal pins
is ignored and instead input from the test bus input pins TBI (27:0) is valid. Output values corresponding to each normal pin
appear at test bus output pins TBO (71:0).

Of the normal pins, A (23:0) and D (15:0) go to high impedance.

The normal output pins including other 3-state output pins are undefined. Note that in unit test mode, this undefined state
changes depending on the internal state or goes to high impedance. Furthermore, DC, CNT1 and CNT2 do not correctly
express the status of the 3-state pin. When controlling the high impedance state, for example, BUNRI should be ORed with DC,
CNT1 and CNT2.

Caution This unit test mode is used by NEC to facilitate testing and not available to customers.

8.3.2 Standby test mode

When the BUNRI pin is high and TEST pin is low, the standby test mode is entered. This mode is used for the mega-function
that is not tested yet for test circuit check simulation or user logic separation simulation.

Input from the normal pins is ignored and A (23:0) and D (15:0) of the normal output pins go to high impedance and other output
pins retain their previous statuses.

Input from test bus input pins TBI (27:0) is also ignored and test bus output pins TBO (71:0) go to high impedance.

79

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (1/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

ADD reg, reg' 0 – 2 2 2

mem, reg 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, mem 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

reg, imm 0 – 4 4 4

mem, imm 2 0 – 18 18 14

1 Odd 26 26 18

Even 18 14

acc, imm 0 – 4 4 4

ADD4SNote [DS1-spec:] dst-string,
[Seg-spec:] src-string

0 – 19×m+7 19×m+7 19×m+7

None 0 – 19×m+7 19×m+7 19×m+7

ADDC reg, reg' 0 – 2 2 2

mem, reg 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, mem 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

reg, imm 0 – 4 4 4

mem, imm 2 0 – 18 18 14

1 Odd 26 26 18

Even 18 14

acc, imm 0 – 4 4 4

ADJ4A None 0 – 3 3 3

ADJ4S None 0 – 3 3 3

ADJBA None 0 – 7 7 7

ADJBS None 0 – 7 7 7

Note m: Number of BCD digits × 1/2

80

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (2/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

AND reg, reg' 0 – 2 2 2

mem, reg 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, mem 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

reg, imm 0 – 4 4 4

mem, imm 2 0 – 18 18 14

1 Odd 26 26 18

Even 18 14

acc, imm 0 – 4 4 4

BC short-label 0 CY=1 14 14 14

CY=0 4 4 4

BCWZ short-label 0 CW=0 5 5 5

CW=0 13 13 13

BE short-label 0 Z=1 14 14 14

Z=0 4 4 4

BGE short-label 0 S V=1 4 4 4

S V=0 14 14 14

BGT short-label 0 (S V) Z=1 4 4 4

(S V) Z=0 14 14 14

BH short-label 0 CY Z=1 4 4 4

CY Z=0 14 14 14

BL short-label 0 CY=1 14 14 14

CY=0 4 4 4

BLE short-label 0 (S V) Z=1 14 14 14

(S V) Z=0 4 4 4

BLT short-label 0 S V=1 14 14 14

S V=0 4 4 4

BN short-label 0 S=1 14 14 14

S=0 4 4 4

BNC short-label 0 CY=1 4 4 4

CY=0 14 14 14

BNE short-label 0 Z=1 4 4 4

Z=0 14 14 14

81

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (3/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

BNH short-label 0 CY Z=1 14 14 14

CY Z=0 4 4 4

BNL short-label 0 CY=1 4 4 4

CY=0 14 14 14

BNV short-label 0 V=1 4 4 4

V=0 14 14 14

BNZ short-label 0 Z=1 4 4 4

Z=0 14 14 14

BP short-label 0 S=1 4 4 4

S=0 14 14 14

BPE short-label 0 P=1 14 14 4

P=0 4 4 4

BPO short-label 0 P=1 4 4 14

P=0 14 14 13

BR near-label 0 – 13 13 13

short-label 0 – 12 12 12

regptr16 0 – 11 11 11

memptr16 1 – Odd 24 24 20

Even 20 18

far-label 0 – 15 15 15

memptr32 2 – Odd 35 35 27

Even 27 23

BRK 3 5 – Odd 50 50 30

Even 38 28

imm8 (≠3) 5 – Odd 50 50 30

Even 38 28

BRKEM imm8 5 – Odd 50 50 30

Even 38 28

BRKV None (when V=1) 5 – Odd 52 52 32

Even 40 30

None (when V=0) 5 – 3 3 3

BRKXA imm8 2 – – – –

BUSLOCK None 0 – 2 2 2

BV short-label 0 V=1 14 14 14

V=0 4 4 4

BZ short-label 0 Z=1 14 14 14

Z=0 4 4 4

82

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (4/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

CALL near-proc 1 – Odd 20 20 16

Even 16 14

regptr16 1 – Odd 18 18 14

Even 14 12

memptr16 2 – Odd 31 31 23

Even 23 19

far-proc 2 – Odd 29 29 21

Even 21 17

memptr32 4 – Odd 47 47 31

Even 31 23

CALLN imm8 5 – Odd 58 58 38

Even 3 28

CHKIND reg16, mem32Note
(when interrupt condition is
established)

7 – Odd 73 to 76 73 to 76 45 to 48

Even 53 to 56 39 to 42

reg16, mem32
(when interrupt condition is not
established)

2 – Odd 26 26 18

Even 18 14

CLR1 reg8, CL 0 – 5 5 5

mem8, CL 0 – 14 14 14

reg16, CL 0 – 5 5 5

mem16, CL 2 – Odd 22 22 14

Even 14 10

reg8, imm3 0 – 6 6 6

mem8, imm3 0 – 15 15 15

reg16, imm4 0 – 6 6 6

mem16, imm4 2 – Odd 23 23 15

Even 15 11

CY 0 – 2 2 2

DIR 0 – 2 2 2

Note The number of clocks varies depending on the timing at which an interrupt request is acknowledged.

83

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (5/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

CMP reg, reg' 0 – 2 2 2

mem, reg 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

reg, mem 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

reg, imm 0 – 4 4 4

mem, imm 1 0 – 13 13 11

1 Odd 17 17 13

Even 13 11

acc, imm 0 – 4 4 4

CMP4SNote 1 [DS1-spec:] dst-string,
[Seg-spec:] stc-string

0 – 19×m+7 19×m+7 19×m+7

None 0 – 19×m+7 19×m+7 19×m+7

CMPBKNote 2 [Seg-spec:] src-block,
[DS1-spec:] dst-block

2×rep(2) 0 – 7+14×rep(13) 7+14×rep(13) 7+10×rep(9)

1 Odd, Odd 7+22×rep(21) 7+22×rep(21) 7+14×rep(13)

Odd, Even 7+18×rep(17) 7+12×rep(11)

Even, Even 7+14×rep(13) 7+10×rep(9)

CMPBKBNote 2 None 2×rep(2) 0 – 7+14×rep(13) 7+14×rep(13) 7+10×rep(9)

1 Odd, Odd 7+22×rep(21) 7+22×rep(21) 7+12×rep(13)

Odd, Even 7+18×rep(17) 7+16×rep(11)

Even, Even 7+14×rep(13) 7+10×rep(9)

CMPBKWNote 2 None 2×rep(2) 0 – 7+14×rep(13) 7+14×rep(13) 7+10×rep(9)

1 Odd, Odd 7+22×rep(21) 7+22×rep(21) 7+14×rep(13)

Odd, Even 7+18×rep(17) 7+12×rep(11)

Even, Even 7+14×rep(13) 7+10×rep(9)

CMPMNote 2 [DS1-spec:] dst-block 1×rep(1) 0 – 7+10×rep(7) 7+10×rep(7) 7+8×rep(5)

1 Odd 7+14×rep(11) 7+14×rep(11) 7+10×rep(7)

Even 7+10×rep(7) 7+8×rep(5)

CMPMBNote 2 None 1×rep(1) 0 – 7+10×rep(7) 7+10×rep(7) 7+8×rep(5)

1 Odd 7+14×rep(11) 7+14×rep(11) 7+10×rep(7)

Even 7+10×rep(7) 7+8×rep(5)

Notes 1. m : Number of BCD digits x 1/2
2. () : Applies to only one-time processing

84

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (6/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

CMPMWNote 1 None 1×rep(1) 0 – 7+10×rep(7) 7+10×rep(7) 7+8×rep(5)

1 Odd 7+14×rep(11) 7+14×rep(11) 7+10×rep(7)

Even 7+10×rep(7) 7+8×rep(5)

CVTBD None 0 – 15 15 15

CVTBW None 0 – 2 2 2

CVTDB None 0 – 7 7 7

CVTWLNote 2 None 0 – 4, 5 4, 5 4, 5

DBNZ short-label 0 CW≠0 13 13 13

CW=0 5 5 5

DBNZE short-label 0 When CW ≠ 0 and Z = 1 14 14 14

Other than above 5 5 5

DBNZNE short-label 0 When CW ≠ 0 and Z = 0 14 14 14

Other than above 5 5 5

DEC reg8 0 – 2 2 2

mem 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg16 0 – 2 2 2

DI None 0 – 2 2 2

DISPOSE None 1 – Odd 10 10 6

Even 6 4

DIVNote 2 reg8 0 – 29 to 34 29 to 34 29 to 34

mem8 0 – 34 to 39 34 to 39 34 to 39

reg16 0 – 38 to 43 38 to 43 38 to 43

mem16 1 – Odd 47 to 52 47 to 52 43 to 48

Even 43 to 48 41 to 46

DIVU reg8 0 – 19 19 19

mem8 0 – 25 25 25

reg16 0 – 25 25 25

mem16 1 – Odd 34 34 30

Even 30 28

DS0: None 0 – 2 2 2

DS1: None 0 – 2 2 2

Notes 1. () : Applies to only one-time processing.
2. The number of clocks varies depending on the data value.

85

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (7/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

EI None 0 – 2 2 2

EXTNote 1 reg8, reg8' 1 or 2 – Odd 34 to 59 34 to 59 32 to 55

Even 26 to 55 22 to 47

reg8, imm4 1 or 2 – Odd 34 to 59 34 to 59 32 to 55

Even 26 to 55 22 to 47

FPO1 fp-op 0 – 2 2 2

fp-op, mem 1 – Odd 15 15 11

Even 11 9

FPO2 fp-op 0 – 2 2 2

fp-op, mem 1 – Odd 15 15 11

Even 11 9

HALT None 0 – 2 2 2

IN acc, imm8 1 0 – 9 9 7

1 Odd 13 13 9

Even 9 7

acc, DW 1 0 – 8 8 6

1 Odd 12 12 8

Even 8 6

INC reg8 0 – 2 2 2

mem 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg16 0 – 2 2 2

INMNote 2 [DS1-spec:] dst-block, DW 2×rep(2) 0 – 9+8×rep(10) 9+8×rep(10) 9+4×rep(6)

1 Odd, Odd 9+16×rep(18) 9+16×rep(18) 9+8×rep(10)

Odd, Even 9+12×rep(14) 9+6×rep(8)

Even, Even 9+8×rep(10) 9+4×rep(6)

INSNote 1 reg8, reg8' 2 or 4 – Odd 35 to 133 35 to 133 27 to 117

Even 31 to 117 27 to 109

reg8, imm4 2 or 4 – Odd 35 to 133 35 to 133 27 to 117

Even 31 to 117 27 to 109

LDEA reg16, mem16 0 – 4 4 4

LDMNote 2 [Seg-spec:] src-block 1×rep(1) 0 – 7+9×rep(7) 7+9×rep(7) 7+7×rep(5)

1 Odd 7+13×rep(11) 7+13×rep(11) 7+9×rep(7)

Even 7+9×rep(7) 7+7×rep(5)

Notes 1. The number of clocks varies depending on the data value.
2. () : Applies to only one-time processing.

86

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (8/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

LDMBNote None 1×rep(1) 0 – 7+9×rep(7) 7+9×rep(7) 7+7×rep(5)

1 Odd 7+13×rep(11) 7+13×rep(11) 7+9×rep(7)

Even 7+9×rep(7) 7+7×rep(5)

LDMWNote None 1×rep(1) 0 – 7+9×rep(7) 7+9×rep(7) 7+7×rep(5)

1 Odd 7+13×rep(11) 7+13×rep(11) 7+9×rep(7)

Even 7+9×rep(7) 7+7×rep(5)

MOV reg, reg' 0 – 2 2 2

mem, reg 1 0 – 9 9 7

1 Odd 13 13 9

Even 9 7

reg, mem 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

mem, imm 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

reg, imm 0 – 4 4 4

acc, dmem 1 0 – 10 10 8

1 Odd 14 14 10

Even 10 8

dmem, acc 1 0 – 9 9 7

1 Odd 13 13 9

Even 9 7

sreg, reg16 0 – 2 2 2

sreg, mem16 1 – Odd 15 15 11

Even 11 9

reg16, sreg 0 – 2 2 2

mem16, sreg 1 – Odd 14 14 10

Even 10 8

DS0, reg16, mem32 2 – Odd 26 26 18

Even 18 14

DS1, reg16, mem32 2 – Odd 26 26 18

Even 18 14

AH, PSW 0 – 2 2 2

PSW, AH 0 – 3 3 3

Note () : Applies to only one-time processing.

87

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (9/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

MOVBKNote 1 [DS1-spec:] dst-block,
[Seg-spec:] src-block

2×rep(2) 0 – 11+8×rep(11) 11+8×rep(11) 11+4×rep(7)

1 Odd, Odd 11+16×rep(19) 11+16×rep(19) 11+8×rep(11)

Odd, Even 11+12×rep(15) 11+6×rep(9)

Even, Even 11+8×rep(11) 11+4×rep(7)

MOVBKBNote 1 None 2×rep(2) 0 – 11+8×rep(11) 11+8×rep(11) 11+4×rep(7)

1 Odd, Odd 11+16×rep(19) 11+16×rep(19) 11+8×rep(11)

Odd, Even 11+12×rep(15) 11+6×rep(9)

Even, Even 11+8×rep(11) 11+4×rep(7)

MOVBKWNote 1 None 2×rep(2) 0 – 11+8×rep(11) 11+8×rep(11) 11+4×rep(7)

1 Odd, Odd 11+16×rep(19) 11+16×rep(19) 11+8×rep(11)

Odd, Even 11+12×rep(15) 11+6×rep(9)

Even, Even 11+8×rep(11) 11+4×rep(7)

MULNote 2 reg8 0 – 33 to 39 33 to 39 33 to 39

mem8 0 – 39 to 45 39 to 45 39 to 45

reg16 0 – 41 to 47 41 to 47 41 to 47

mem16 1 – Odd 51 to 57 51 to 57 47 to 53

Even 47 to 53 45 to 51

reg16, imm8 0 – 28 to 34 28 to 34 28 to 34

reg16, imm16 0 – 36 to 42 36 to 42 36 to 42

reg16, reg16', imm8 0 – 28 to 34 28 to 34 28 to 34

reg16, mem16, imm8 1 – Odd 38 to 44 38 to 44 34 to 40

Even 34 to 40 32 to 38

reg16, reg16', imm16 0 – 36 to 42 36 to 42 36 to 42

reg16, mem16, imm16 1 – Odd 46 to 52 46 to 52 42 to 48

Even 42 to 48 40 to 46

MULUNote 2 reg8 0 – 21, 22 21, 22 21, 22

mem8 1 – 27, 28 27, 28 25, 26

reg16 0 – 29, 30 29, 30 29, 30

mem16 1 – Odd 39, 40 39, 40 35, 36

Even 35, 36 33, 34

NEG reg 0 – 2 2 2

mem 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

Notes 1. () : Applies to only one-time processing.
2. The number of clocks varies depending on the data value.

88

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (10/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

NOP None 0 – 3 3 3

NOT reg 0 – 2 2 2

mem 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

NOT1 reg8, CL 0 – 4 4 4

mem8, CL 0 – 13 13 13

reg16, CL 0 – 4 4 4

mem16, CL 2 – Odd 21 21 13

Even 13 9

reg8, imm3 0 – 5 5 5

mem8, imm3 0 – 14 14 14

reg16, imm4 0 – 5 5 5

mem16, imm4 2 – Odd 22 22 14

Even 14 10

CY 0 – 2 2 2

OR reg, reg' 0 – 2 2 2

mem, reg 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, mem 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

reg, imm 0 – 4 4 4

mem, imm 2 0 – 18 18 14

1 Odd 26 26 18

Even 18 14

acc, imm 0 – 4 4 4

OUT imm8, acc 1 0 – 8 8 6

1 Odd 12 12 8

Even 8 6

DW, acc 1 0 – 8 8 6

1 Odd 12 12 8

Even 8 6

89

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (11/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

OUTMNote 1 DW, [Seg-spec:] src-block 2×rep(2) 0 – 9+8×rep(10) 9+8×rep(10) 9+4×rep(6)

1 Odd, Odd 9+16×rep(18) 9+16×rep(18) 9+8×rep(10)

Odd, Even 9+12×rep(14) 9+6×rep(8)

Even, Even 9+8×rep(10) 9+4×rep(6)

POLLNote 2 None 0 – 2+5×poll 2+5×poll 2+5×poll

POP mem16 2 – Odd 25 25 17

Even 17 13

reg16 1 – Odd 12 12 8

Even 8 6

sreg 1 – Odd 12 12 8

Even 8 6

PSW 1 – Odd 12 12 8

Even 8 6

R 7 – Odd 75 75 47

Even 43 29

PREPARE imm16, imm8
(when imm8=0)

1 – Odd 16 16 12

Even 12 10

imm16, imm8
(when imm8≥1)

2×imm8 – Odd 23+16(imm8–1) 23+16(imm8–1) 23+8(imm8–1)

Even 19+8(imm8–1) 19+4(imm8–1)

PS: None 0 – 2 2 2

PUSH mem16 2 – Odd 26 26 18

Even 18 14

reg16 1 – Odd 12 12 8

Even 8 6

sreg 1 – Odd 12 12 8

Even 8 6

PSW 1 – Odd 12 12 8

Even 8 6

R 8 – Odd 67 67 35

Even 35 19

imm8 1 – Odd 11 11 7

Even 7 5

imm16 1 – Odd 12 12 8

Even 8 6

Notes 1. () : Applies to only one-time processing.
2. poll : Number of POLLB pin sampling times

90

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (12/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

REP None 0 – 2 2 2

REPC None 0 – 2 2 2

REPE None 0 – 2 2 2

REPNC None 0 – 2 2 2

REPNE None 0 – 2 2 2

REPNZ None 0 – 2 2 2

REPZ None 0 – 2 2 2

RET None
(segment internal call)

1 – Odd 19 19 15

Even 15 13

None
(segment external call)

2 – Odd 29 29 21

Even 21 17

pop-value
 (segment internal call)

1 – Odd 24 24 20

Even 20 18

pop-value
(segment external call)

2 – Odd 32 32 24

Even 24 20

RETEM None 3 – Odd 39 39 27

Even 27 21

RETI None 3 – Odd 39 39 27

Even 27 21

RETXA imm8 2 – – – –

ROLNote reg, 1 0 – 6 6 6

mem, 1 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, CL 0 – 7+n 7+n 7+n

mem, CL 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

reg, imm8 0 – 7+n 7+n 7+n

mem, imm8 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

ROL4 reg8 0 – 13 13 13

mem8 0 – 28 28 28

Note n: Number of shifts

91

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (13/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

ROLCNote reg, 1 0 – 6 6 6

mem, 1 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, CL 0 – 7+n 7+n 7+n

mem, CL 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

reg, imm8 0 – 7+n 7+n 7+n

mem, imm8 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

RORNote reg, 1 0 – 6 6 6

mem, 1 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, CL 0 – 7+n 7+n 7+n

mem, CL 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

reg, imm8 0 – 7+n 7+n 7+n

mem, imm8 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

ROR4 reg8 0 – 17 17 17

mem8 0 – 32 32 32

Note n: Number of shifts

92

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (14/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

RORCNote reg, 1 0 – 6 6 6

mem, 1 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, CL 0 – 7+n 7+n 7+n

mem, CL 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

reg, imm8 0 – 7+n 7+n 7+n

mem, imm8 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

SET1 reg8, CL 0 – 4 4 4

mem8, CL 0 – 13 13 13

reg16, CL 0 – 4 4 4

mem16, CL 2 – Odd 21 21 15

Even 13 9

reg8, imm3 0 – 5 5 5

mem8, imm3 0 – 14 14 14

reg16, imm4 0 – 5 5 5

mem16, imm4 2 – Odd 22 22 16

Even 14 10

CY 0 – 2 2 2

DIR 0 – 2 2 2

SHLNote reg, 1 0 – 6 6 6

mem, 1 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, CL 0 – 7+n 7+n 7+n

mem, CL 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

reg, imm8 0 – 7+n 7+n 7+n

mem, imm8 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

Note n: Number of shifts

93

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (15/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

SHRNote 1 reg, 1 0 – 6 6 6

mem, 1 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, CL 0 – 7+n 7+n 7+n

mem, CL 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

reg, imm8 0 – 7+n 7+n 7+n

mem, imm8 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

SHRANote 1 reg, 1 0 – 6 6 6

mem, 1 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, CL 0 – 7+n 7+n 7+n

mem, CL 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

reg, imm8 0 – 7+n 7+n 7+n

mem, imm8 2 0 – 19+n 19+n 15+n

1 Odd 27+n 27+n 19+n

Even 19+n 15+n

SS: None 0 – 2 2 2

STMNote 2 [DS1-spec:] dst-block 1×rep(1) 0 – 7+4×rep(7) 7+4×rep(7) 7+2×rep(5)

1 Odd 7+8×rep(11) 7+8×rep(11) 7+4×rep(7)

Even 7+4×rep(7) 7+2×rep(5)

STMBNote 2 None 1×rep(1) 0 – 7+4×rep(7) 7+4×rep(7) 7+2×rep(5)

1 Odd 7+8×rep(11) 7+8×rep(11) 7+4×rep(7)

Even 7+4×rep(7) 7+2×rep(5)

STMWNote 2 None 1×rep(1) 0 – 7+4×rep(7) 7+4×rep(7) 7+2×rep(5)

1 Odd 7+8×rep(11) 7+8×rep(11) 7+4×rep(7)

Even 7+4×rep(7) 7+2×rep(5)

Notes 1. n : Number of shifts
2. () : Applies to only one-time processing.

94

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (16/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

SUB reg, reg' 0 – 2 2 2

mem, reg 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, mem 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

reg, imm 0 – 4 4 4

mem, imm 2 0 – 18 18 14

1 Odd 26 26 18

Even 18 14

acc, imm 0 – 4 4 4

SUB4SNote [DS1-spec:] dst-string,
[Seg-spec:] src-string

0 – 19×m+7 19×m+7 19×m+7

None 0 – 19×m+7 19×m+7 19×m+7

SUBC reg, reg' 0 – 2 2 2

mem, reg 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, mem 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

reg, imm 0 – 4 4 4

mem, imm 2 0 – 18 18 14

1 Odd 26 26 18

Even 18 14

acc, imm 0 – 4 4 4

Note m: Number of BCD digits × 1/2

95

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (17/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

TEST reg, reg' 0 – 2 2 2

mem, reg 1 0 – 10 10 8

1 Odd 14 14 10

Even 10 8

reg, mem 1 0 – 10 10 8

1 Odd 14 14 10

Even 10 8

reg, imm 0 – 4 4 4

mem, imm 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

acc, imm 0 – 4 4 4

TEST1 reg8, CL 0 – 3 3 3

mem8, CL 0 – 8 8 8

reg16, CL 0 – 3 3 3

mem16, CL 1 – Odd 12 12 8

Even 8 6

reg8, imm3 0 – 4 4 4

mem8, imm3 0 – 9 9 9

reg16, imm4 0 – 4 4 4

mem16, imm4 1 – Odd 13 13 9

Even 9 7

TRANS src-table 1 – 9 9 7

None 1 – 9 9 7

TRANSB None 1 – 9 9 7

XCH reg, reg' 0 – 3 3 3

mem, reg 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, mem 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

AW, reg16 0 – 3 3 3

reg16, AW 0 – 3 3 3

96

APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

List of Number of Instruction Execution Clocks (18/18)

Mnemonic Operand
Number of

Word
Transfers

Condition Clocks

W Address V20HL V30HL V30MX

XOR reg, reg' 0 – 2 2 2

mem, reg 2 0 – 16 16 12

1 Odd 24 24 16

Even 16 12

reg, mem 1 0 – 11 11 9

1 Odd 15 15 11

Even 11 9

reg, imm 0 – 4 4 4

mem, imm 2 0 – 18 18 14

1 Odd 26 26 18

Even 18 14

acc, imm 0 – 4 4 4

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-889-1689

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Corporation
Semiconductor Solution Engineering Division
Technical Information Support Dept.
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 96.8

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	PREFACE
	CHAPTER 1 GENERAL DESCRIPTION
	1.1 Features
	1.2 Outline of Differences from V30HL
	1.3 Symbol Diagram
	1.4 Internal Block Diagram

	CHAPTER 2 PIN FUNCTIONS
	2.1 Pin List
	2.2 Description of Pin Functions
	2.3 Pin Information in Specific Status

	CHAPTER 3 CPU FUNCTIONS
	3.1 Register Configuration
	3.1.1 General-purpose registers (AW, BW, CW, DW)
	3.1.2 Segment registers (PS, SS, DS0, DS1)
	3.1.3 Pointer (SP, BP)
	3.1.4 Program counter (PC)
	3.1.5 Program status word (PSW)
	3.1.6 Index register (IX, IY)

	3.2 Address Space
	3.2.1 Memory space
	3.2.2 I/O space

	3.3 Internal Block Functions
	3.3.1 Bus control unit (BCU)
	3.3.2 Execution unit (EXU)

	3.4 Logical Address and Physical Address
	3.4.1 Segment system
	3.4.2 Segment configuration
	3.4.3 Dynamic relocation

	3.5 Effective Address
	3.6 Instruction Set
	3.6.1 List of instruction sets by function
	3.6.2 Format after instruction

	3.7 Addressing Mode
	3.7.1 Instruction address
	3.7.2 Data address

	3.8 Faster Execution of Instructions
	3.8.1 Dual data bus system
	3.8.2 Effective address generator (EAG)
	3.8.3 Temporary register/shifter A and B (TA, TB)
	3.8.4 Loop counter (LC)
	3.8.5 Program counter (PC) and prefetch pointer (PFP)

	3.9 EMS Functions
	3.9.1 EMS control registers
	3.9.2 Caution on accessing EMS control registers
	3.9.3 EMS setting example

	CHAPTER 4 BUS CONTROL FUNCTIONS
	4.1 Interface between V30MX and Memory
	4.1.1 Cautions on accessing word data

	4.2 Accessing I/O Space
	4.3 Read Timing of Memory and I/O
	4.4 Write Timing of Memory and I/O
	4.5 Bus Hold Function

	CHAPTER 5 INTERRUPT FUNCTIONS
	5.1 Hardware Interrupt
	5.1.1 Non-maskable interrupt (NMI)
	5.1.2 Maskable interrupt (INT)

	5.2 Software Interrupts
	5.3 Timing at which Interrupt is Not Acknowledged
	5.4 Interrupt Servicing in Execution of Block Processing Instruction

	CHAPTER 6 STANDBY FUNCTIONS
	6.1 Setting of Standby Mode
	6.2 Standby Mode
	6.3 Release of Standby Mode
	6.3.1 Release by hardware interrupt
	6.3.2 Release by RESET input

	CHAPTER 7 RESET FUNCTIONS
	CHAPTER 8 TEST FUNCTIONS
	8.1 Test Pins
	8.1.1 Test bus pins (TBI (27:0), TBO (71:0))
	8.1.2 BUNRI, TEST

	8.2 Normal Mode
	8.3 Unit Test Mode and Standby Test Mode
	8.3.1 Unit test mode
	8.3.2 Standby test mode

	APPENDIX LIST OF NUMBER OF INSTRUCTION EXECUTION CLOCKS

